
Towards Context-Aware Adaptable Web Services

Markus Keidl
Universität Passau

94030 Passau, Germany

keidl@db.fmi.uni-passau.de

Alfons Kemper
Universität Passau

94030 Passau, Germany

kemper@db.fmi.uni-passau.de

ABSTRACT
In this paper, we present a context framework that facilitates the
development and deployment of context-aware adaptable Web ser-
vices. Web services are provided with context information about
clients that may be utilized to provide a personalized behavior.
Context is extensible with new types of information at any time
without any changes to the underlying infrastructure. Context pro-
cessing is done by Web services, context plugins, or context ser-
vices. Context plugins and context services pre- and post-process
Web service messages based on the available context information.
Both are essential for automatic context processing and automatic
adaption of Web services to new context types without the neces-
sity to adjust the Web services themselves. We implemented the
context framework within the ServiceGlobe system, our open and
distributed Web service platform.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous; H.3.5 [Information
Storage and Retrieval]: Online Information Services—Web-based
services; H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems, Information networks

General Terms
Design, Human Factors

Keywords
Web services, information services, context, service platform, ex-
tensibility, automatic context processing, extensible framework

1. INTRODUCTION
Today, consumers have several ways to access information ser-

vices on the Internet, e.g., browsers on desktop computers, PDAs,
or cell phones. As the trend to an increasing number of ubiqui-
tous, connected devices—called pervasive computing—continues
to grow, the heterogeneity of client capabilities and the number of
methods for accessing information services also increases. Never-
theless, consumers expect Web services to be accessible from all of
these devices in a similar fashion. They also expect that Web ser-
vices are aware of their current environment, e.g., the type of device
they are using, their preferences, or their location. Generally, this
kind of information is calledcontext.

More precisely, in our work context constitutes information about
clients and their environment that may be used by Web services to

Copyright is held by the author/owner(s).
WWW2004, May 17–22, 2004, New York, New York, USA.
ACM 1-58113-912-8/04/0005.

provide clients with a customized and personalized behavior. So,
context contains, e.g., a consumer’s name, address and current lo-
cation, the type of client device (hard- and software) the consumer
is using, or all kinds of preferences regarding the communication,
the format of the Web services’ replies, or—in case of information
services—the maximum volume of data that should be returned.
Web services use such context information to adjust their internal
control flow as well as content and format of their replies.

In this paper, we present a context framework that facilitates the
development and deployment of context-aware adaptable Web ser-
vices. The framework consists of two main parts: a distributed in-
frastructure, which transmits context between clients and Web ser-
vices and manages the context processing, and the context types,
which are the supported types of context information and which
are extensible at any time.

The actual context processing is done by three components: Web
services themselves, context plugins, or context services. Context
plugins and context services are provided by the context frame-
work, and they pre- and post-process Web service messages based
on available context information. Both components are essential
for automatic context processing, i.e., for processing context with-
out the support of the original Web services, and automatic adap-
tion of Web services to new context types.

Context plugins are basically Java objects implementing a ded-
icated interface. They are loaded by the service platform during
startup, and they support locally executed Web services, i.e., a con-
text plugin cannot be used if it is not locally available. Context
services, on the other hand, are Web services (implementing a spe-
cial interface defined using the WSDL standard) and they might be
available anywhere on the Internet. They provide similar function-
ality as context plugins, but need not be locally available.

Our context framework has several advantages: The set of con-
text types is extensible at any time without any changes to the
underlying infrastructure. By adding appropriate context services
and/or context plugins, new context types are used instantly and
automatically. If using these new context types is achieved by pre-
and post-processing Web service messages, the implementations of
Web services need not be adjusted. That way, Web services may
even utilize context information that was unknown at their devel-
opment time.

We implemented the context framework within the ServiceGlobe
system [22, 19, 20], our open and distributed Web service platform.
Information about the current implementation status of the context
framework is given in Section 4.5. The context framework as well
as ServiceGlobe are fully implemented in Java Release 2 and are
based on standards like XML, SOAP, UDDI, and WSDL. Service-
Globe supports mobile code, i.e., Web services can be distributed
on demand and instantiated at runtime at arbitrary Internet servers

AttractionsSearch

Client

Figure 1: Example Scenario: No Context Processing

AttractionsSearch

Client

Location

RoutePlanner
Context Processing:

Location

Figure 2: Example Scenario: Internal Context Processing

participating in the ServiceGlobe federation. Also, it offers all stan-
dard functionality of a service platform like SOAP/XML commu-
nication, a transaction system, and a security system [37].

The remainder of this paper is structured as follows: Section 2
presents a motivating scenario that is used as an example through-
out this paper. In Section 3, we present a short introduction into
Web service standards that are important for our work. In Sec-
tion 4, our context framework is described. Several types of context
information available in our framework are presented in Section 5.
Finally, Section 6 gives some related work and Section 7 concludes
this paper.

2. MOTIVATING SCENARIO
In this paper, we use an information service scenario from the

travel agency area as a motivating example. In the future, the Inter-
net will provide a lot of information services in this area, e.g., Web
services for searching flights, hotels, attractions, and so on. These
Web services can help, for example, travel agencies, to plan and
carry out journeys.1

A provider of such services, e.g., the provider of the Attractions-
Search Web service (depicted in Figure 1), allows the use of context
information with its services. The provider extends its Attractions-
Search Web service with a component that uses a consumer’s loca-
tion to include driving directions into the Web service’s reply (the
necessary data is retrieved from an appropriate Web service, e.g.,
the Web service RoutePlanner). Therefore, the implementation of
the AttractionsSearch Web service has to be changed (as depicted
in Figure 2).

Consumers are accepting this new feature. So, the provider of
another Web service, e.g., HotelsSearch, also wants to enable con-
text processing for its service. Thus, the provider must adjust the
implementation of its Web service to utilize location context in-
formation. Although the Web services AttractionsSearch and Ho-
telsSearch share the same functionality, both implement their own
version of it. Also, both Web service implementations had to be
changed. Furthermore, if one of these providers wants to extend its
Web service again, e.g., to use context information about the con-
sumers’ clients, it must adjust the Web service’s implementation a
second time.

Therefore, the functionality to process and use context informa-
tion should not be (deeply) integrated into the Web services them-
selves. Instead, the different functional duties should be isolated
and they should be implemented in separate components. These
components should be provided externally (see Figure 3). Their
1Travel portals like MapQuest.com are a first step in this direction.

Client

Location

RoutePlanner
Context Processing:

Location

AttractionsSearch

Figure 3: Example Scenario: External Context Processing

usage must be transparent for Web services and they must be used
automatically if a Web service’s request contains context informa-
tion. Additionally, they must provide a generic solution, i.e., the
same component must be usable for a variety of Web services, e.g.,
the AttractionsSearch Web service as well as the HotelsSearch Web
service.

Our context framework presents a solution for the problems out-
lined above as it has precisely the desired properties: It is transpar-
ent for Web services, context processing components are automat-
ically deployed, and these components can be used generically (of
course, they must be implemented properly). In Section 5, we de-
scribe how the above scenario can be implemented with our context
framework.

3. WEB SERVICES FUNDAMENTALS
There exists a variety of XML-based standards concerning Web

services. We will briefly survey the most important ones that are
needed to understand this work.

The SOAP Standard
SOAP [31] is an XML-based communication protocol for distributed
applications. SOAP is designed to exchange messages containing
structured and typed data and can be used on top of several dif-
ferent transfer protocols like HTTP, SMTP (Simple Mail Transfer
Protocol), and FTP (File Transfer Protocol). The use of SOAP over
HTTP is the de-facto standard in the current landscape of Web ser-
vices.

SOAP itself does not define any application semantics and, there-
fore, can be used in a broad range of applications. It can be used
to simply deliver a single message or for complex tasks like re-
quest/response message exchange or RPC (Remote Procedure Call).
The XML document in Figure 5 shows the basic structure of a
SOAP message, consisting of three parts: an envelope, an optional
header, and a mandatory body.

TheEnvelope element is the root element of a message and con-
tains the other two elementsHeader andBody. TheHeader ele-
ment of a message offers a generic mechanism to extend the SOAP
protocol in a decentralized manner. This is used for extensions like
Web Service Security [17]. We defined a SOAP header extension
to transmit Web service context within SOAP messages, see Sec-
tion 4. TheBody element of the message contains the payload of
the message.

The UDDI Standard
UDDI (Universal, Description, Discovery and Integration) is de-
signed to “provide a platform-independent way of describing ser-
vices, discovering businesses, and integrating business services us-
ing the Internet” [40]. Four main data structures can be identified,
which constitute the basic schema: businessEntity, businessSer-
vice, bindingTemplate, and tModel. While the first three data struc-
tures form a hierarchy, the tModels can be seen as an independent
structure providing technical fingerprints of services, concepts, and
ideas (see Figure 4).

businessEntity

WSDL DocumentbindingTemplate

businessService tModel

Figure 4: UDDI Data Structures

The businessEntity data structure contains data about an entire
company or party that offers a family of services. A businessEntity
registers several services. The businessService structure contains
information about a particular service. It contains also one or more
bindingTemplates specifying binding information for the service.
The most important component of the bindingTemplate structure is
the access point of a service, i.e., the actual URL, phone number,
etc., by which the service can be invoked. A bindingTemplate may
have several references to tModels.

As a technical fingerprint, tModels describe various concepts and
classifications. A tModel may contain a link to a WSDL document
that specifies the signature of a service in detail. Besides these
service-classification-oriented tModels, also concept-oriented tMod-
els like geographical locations or industry codes are possible.

The WSDL Standard
WSDL (Web Service Description Language) [6] is an XML-based
language to describe the technical specifications of a Web service,
including the operations offered by the Web service, the syntax of
input and output documents, the communication protocol to use
for communication with the service, and some further information.
The exact structure of a WSDL document is out of the scope of this
paper.

4. CONTEXT FOR WEB SERVICES
In the literature, there are a number of different definitions and

uses of the term context [32, 8, 36, 13, 33, 14, 34]. In our work,
context encompasses all information about the client of a Web ser-
vice that may be utilized by the Web service to adjust execution and
output to provide the client with a customized and personalized be-
havior.

Context is different from the parameters of a Web service: First
of all, the same context information is interesting for a number of
Web services whereas parameters are only used by exactly the Web
service they belong to. As a consequence, context can often be
evaluated automatically, e.g., by the service platform. This sim-
plifies the development of Web services as the evaluation of such
context does not need to be integrated into the Web services them-
selves. A further difference is that context information is optional
whereas parameters are mandatory. Context information does not
need to be passed to a Web service and if it is, the Web service does
not necessarily need to understand and process it.

4.1 Context Infrastructure
In our framework, context is transmitted as a SOAP header block

within the SOAP messages that Web services receive and send (see

SOAP Envelope

SOAP Header

SOAP Body

Header Block: Context

Context Block
Context Type:

Location

Context Block

Header Block

Context Type:
Client

Figure 5: Context within a SOAP Message

Figures 5 and 6 for an example). Legacy Web service platforms
that do not support context information may ignore this specific
header block (in conformity with the SOAP standard).2 As context
information is optional, Web services executed on legacy platforms
are nevertheless able to process such requests, but they lose the
benefit of the context information.

Analogous to a SOAP header, context consists of severalcontext
blocks. Each context block is associated to onecontext type, which
exactly defines the type of context information the context block
is allowed to contain. At most one context block is allowed for a
specific context type, i.e., no two context blocks can be associated
to the same context type. The context in Figure 5 contains two
context blocks: one associated to the context type Location (with
information about a consumer’s current location) and another one
of context type Client (with information about the client’s hard- and
software). More information about the context types supported by
our context framework is given in Section 5.

Every context type has a uniquecontext type identifier. This
identifier is equal to the qualified name of the XML elements that
represent corresponding context blocks, i.e., identifiers must be
valid qualified names. The qualified name of an XML element is
composed of its namespace and element name. For example, in
Figure 6 there is a context block elementClient with namespace
http://sg.fmi.uni-passau.de/context. Consequently, the
associated context type ishttp://sg.fmi.uni-passau.de/
context:Client. We omit the namespace part in the following
and reference context blocks (and context types) only by the corre-
sponding element names.

Context types are basically used to distinguish context blocks.
For example, if a Web service wants to access information of its
context, it specifies the type of context information it wants to re-
trieve, i.e., a context type identifier. The context infrastructure de-
termines the corresponding context block using this identifier and
returns it. For the infrastructure, the knowledge of a context type
identifier is sufficient for allowing access to the context type and
for guaranteeing that a context contains at most one context block
of any context type.

2If the attributemustUnderstand is set in a context header block,
Web service platforms must process the context or fail processing
the message [31].

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header>

<Context xmlns="http://sg.fmi.uni-passau.de/context">
<Location>
<address useType="Office">

<addressLine keyName="Street" keyValue="60">Innstrasse 33</addressLine>
<addressLine keyName="City" keyValue="40">D-94032 Passau</addressLine>

</address>
</Location>
<Client>
<DeviceDefaults>http://example.com/context/device/PDA</DeviceDefaults>
<Hardware>

<ScreenSize>320x200</ScreenSize>
<IsColorCapable>Yes</IsColorCapable>

</Hardware>
</Client>

</Context>
</env:Header>
<env:Body>

<!-- serialized object data -->
</env:Body>

</env:Envelope>

Figure 6: A SOAP Message with a Context Header Block

Though the infrastructure does not require the validation of a
context block’s content against the schema of its context type, it
does provide the possibility for it, especially to free Web services
themselves from this task. For this purpose, a context type has to
be published in a UDDI repository as a tModel.3 In the tModel,
the identifier of the context type must be specified. Also, if content
validation should be possible, an XML schema document must be
referenced that defines the schema to which corresponding context
blocks have to conform to. If the validation of a context block fails,
the context block is marked as incorrect and not used further on.

Figure 7 gives an example of a tModel which defines the con-
text type Location. The context type’s identifierhttp://sg.fmi.
uni-passau.de/context:Location is specified as a keyedRef-
erence in the tModel’s identifierBag. In the categoryBag, it is spec-
ified that the tModel is derived from the tModelContextType,
which serves as base tModel. The overviewDoc entry contains a
URL that links to the XSL schema document which defines the
context type’s schema.

4.2 The Life-Cycle of Context Information
The life-cycle of a Web service’s context, illustrated in Figure 8,

starts at a client’s site: First, the client gathers all relevant context
information and inserts it into the SOAP request as a context header
block. Then, the request is sent to the host executing the Web ser-
vice.

After the request was received by a Web service platform, the
context is extracted by the context framework and provided to the
invoked Web service as itscurrent context. During its execution,
the Web service can access and modify this current context using
the Context API provided by the framework. For example, in Fig-
ure 8, the first context block is modified (illustrated by the color
change to gray) and a new context block (the third, black rectan-
gle) is inserted.

When the Web service invokes another service during its execu-
tion, its current context is automatically inserted into the outgoing
request. The response to such a request may also contain context
information. In this case, the Web service can extract the interest-
ing parts of the context data from the response and insert them into
its current context.

After the Web service’s termination, its (possibly modified) cur-
rent context is automatically inserted into its response and sent back

3These tModels are also used by other parts of the context frame-
work, see Section 4.4 for further details.

to the invoker. If the invoker is a client, as in Figure 8, it may in-
tegrate portions of the returned context into its local context (for
use in future requests). Furthermore, the returned context may be
utilized by the client to adjust the Web service’s response.

In the entire context life-cycle, potential privacy and security is-
sues have to be considered. For example, clients should be able to
specify what modifications a Web service is allowed to perform on
the context and also what parts of the context the Web service is
allowed to insert into requests to other Web services. Furthermore,
the policies must state if and how a client is allowed to modify a
its local context. Partly, these issues are considered in Section 4.4.
Elaborate privacy and security policies are out of the scope of this
paper.

4.3 Context Processing
In our context framework, we distinguish two types of context

processing: explicit processing by Web services or clients and au-
tomatic processing by the context framework.

Explicit Context Processing
Explicit processing means that Web services or clients directly ac-
cess the context contained in a SOAP message using the frame-
work’s Context API and, consequently, that the context processing
functionality is part of their code. Thus, there is a tight coupling
between such Web services and clients and the context types they
are able to process. That is, such Web services and clients can only
utilize context types that were known and integrated at their de-
velopment time. A further disadvantage is the additional coding
effort, as the same or at least similar context processing functional-
ity is basically contained in many Web services and clients. Also, a
strict separation of concerns is missing. An advantage of this type
of context processing is that Web services and clients have full con-
trol over how the context information influences their control flow
and their replies. Additionally, they can access the context infor-
mation to modify it.

An example for explicit processing is the client we implemented.
It processes the returned context information to finally adjust the
response to its device capabilities, e.g., by using stylesheet infor-
mation inserted into the returned context.

Automatic Context Processing
Automatic context processing means that SOAP messages are pre-
and/or post-processed (from a Web service’s point of view) based

<tModel>
<name>Location Context Type</name>
<overviewDoc>

<overviewURL useType="xmlSchema">http://sg.fmi.uni-passau.de/context/context-location.xsd</overviewURL>
</overviewDoc>
<identifierBag>

<keyedReference keyName="ContextTypeID"
keyValue="http://sg.fmi.uni-passau.de/context:Location"
tModelKey="uddi:serviceglobe:identifier:contexttype"/>

</identifierBag>
<categoryBag>

<keyedReference keyName="derivedFrom:ContextType"
keyValue="uddi:serviceglobe:categorization:contexttypes"
tModelKey="uddi:uddi.org:categorization:derivedFrom"/>

<keyedReference keyName="uddi-org:types" keyValue="categorization"
tModelKey="uddi:uddi.org:categorization:types"/>

</categoryBag>
</tModel>

Figure 7: The tModel for the Location Context Type

Web Service Platform

Client
Context

Web Service

C
on

te
xt ...SOAP Request

SOAP Response

Context

Context

Figure 8: Context Life-Cycle

on the context information they contain. Automatic context pro-
cessing is done by the context framework, i.e., Web services are
not involved in it. As a consequence, the context processing task is
moved from the Web services to the service platform and the cod-
ing effort for Web services is reduced. A disadvantage is, of course,
that only a Web service’s requests and responses can be modified,
its internal process flow cannot be adjusted by this means.

There are four different points in time at which context is pro-
cessed automatically (see Figure 9): First, the incoming SOAP re-
quest of an invoked Web service is pre-processed (1), based on the
context in the request. Furthermore, whenever the Web service in-
vokes other services (using the invocation manager), outgoing mes-
sages, i.e., requests to other services, are post-processed before they
are actually sent (2) and incoming messages, i.e., responses to out-
going requests, are pre-processed before they are returned to the
Web service (3). Finally, the outgoing response of the invoked Web
service is post-processed (4), based on the service’s current con-
text (which might be a modified version of the received one). To
sum up, this means that all messages to and from an invoked Web
service can be modified based on context information.4

Of course, modification of messages also implies that the mes-
sages’ content can be modified, e.g., the content of a Web service’s
reply. For example, in our demonstration at the EDBT’04 con-

4In our work, we assume a request-response message exchange pat-
tern as, e.g., used for remote procedure calls (RPC). If a different
exchange pattern is used, e.g., if a Web service does not return a
response, the corresponding processing steps are omitted.

ference [18], we used automatic context processing to convert the
price information within a Web service’s reply content into the cur-
rency of the consumer’s location.

In the following, we refer to the procedures when a Web service’s
message is pre- or post-processed ascontext operations and we
call themPreprocessRequest (1), PostprocessMessageRequest (2),
PreprocessMessageResponse (3), andPostprocessResponse (4), re-
spectively.

In every context operation, automatic context processing is done
by processing the context blocks of the SOAP message’s context in
arbitrary order. Consequently, during the processing of a context
block, no assumptions can be made on the processing state of any
other context block, i.e., if some other context block has already
been processed or not.

After selecting an arbitrary, not yet processed context block, the
context framework determines its context type. For every context
type, the context manager (see Figure 9) manages a list of compo-
nents capable of processing context information of the associated
type. The actual processing of the selected context block is del-
egated to these components, which are described in the following
section. There are several ways to configure which of these com-
ponents should actually be used for processing and in what order.
Details are given in Section 4.4.

Components for Automatic Context Processing
The context framework delegates automatic context processing to
two types of components, as shown in Figure 9: context plugins and

Web Service Platform

Web Service Manager

Web Service

SOAP Request

C
on

te
xt

 M
a

n
ag

e
r

Context Plugins

Context Services

S
O

A
P

 R
e

q
ue

st
 P

ro
ce

ss
in

g

Context
Header Block

Pre-Processing

SOAP Response

SOAP Payload
Processing

(1)

(4)

Invocation
Manager

Context

Context

(2)

P
re

-P
ro

c
e

s
s

R
e

q
u

e
st

P
o

st
-P

ro
c

e
s

s

R
e

sp
o

n
s

e

ContextPlugin Interface

P
re

-P
ro

c
e

s
s

M
e

ss
a

g
e

P
o

s
t-

P
ro

c
e

s
s

M
e

ss
a

g
e

(3)

Context
Header Block

Post-Processing

Figure 9: Components for Context Processing

context services.Context plugins are basically Java objects imple-
menting a special Java interface. They must be installed locally at
a host and they are loaded by the service platform during startup.
Context services are Web services that implement theContext-
Service interface. This interface, defined using the WSDL stan-
dard, describes the four context operations a context service should
implement. A UDDI tModelContextService is provided that
links to the WSDL document with the interface description. Con-
text services should refer to this tModel when published in UDDI.
In their bindingTemplate entries, context services may also specify
which context operations they actually support.

Every component, i.e., every context plugin and every context
service, is associated with one context type and it is used to process
context information of this type only. When invoked, a component
requires two parameters: The first one is a context block of the
component’s associated context type. The second one depends on
the context operation that is invoked on the plugin: It is the request
to a Web service, the service’s response, an outgoing request of
the Web service (to invoke another Web service) or an incoming
response of such an invoked service.

Context services are very similar to context plugins as they ba-
sically implement the same interface. Both enable automatic pro-
cessing of context information and are essential for the easy ex-
tensibility of context. On the other hand, context services are Web
services. They need not be installed locally, as context plugins must
be, but can be available anywhere on the Internet. If implemented
as mobile Web services, as it is possible in the ServiceGlobe sys-
tem, context services may be loaded dynamically and on demand
and they may be executed on the local host.

Besides the reduction of the coding effort, context plugins and
context services have the advantage that they constitute a generic
solution. A context plugin or service for a specific context type can
be used for a variety of Web services without any need for specific
adjustments depending on the Web service they are used for. Even
more important, Web services can now utilize context types they
do not support themselves. This is also beneficial for legacy Web
services which cannot be modified.

4.4 Context Processing Instructions
In Section 4.3, several components for context processing were

introduced. A context block in a SOAP request is possibly pro-
cessed by context plugins, context services, and/or the invoked Web
service itself. Therefore, rules of precedence are required and also
information about which components should actually be used for
processing. Additionally, the same context block is probably not
only processed at a Web service’s local host, but also at hosts on
which the Web service invokes other services, as context is inserted
into outgoing messages.

Precautions have to be taken to prevent these problems and ambi-
guities. In our framework,context processing instructions are used
for this purpose.5 If no context processing instructions are speci-
fied, defaults are used: Context plugins are invoked as configured
locally at the service platform (default here is alphabetical order
according to the class name). Context services are not used by de-
fault. Invoked Web services themselves can always process their
context information.

Context processing instructions are specified within aContext-

ProcessingInstructions element, as depicted in the example
in Figure 10 (for the moment, we ignore the enclosing UDDI ele-
ments). For every context type, they can contain at most oneCon-
textType subelement. Within this element, instructions for the
corresponding context type are specified. Currently, component in-
structions and processing guidelines can be specified. But we are
still investigating these issues and we are going to consider them in
more detail in future work.

Component Instructions
With component instructions, context plugins and context services
that should be used for processing context information of the en-
closing context type and their execution order are specified. Con-

5Apart from their name, context processing instructions and XML
processing instructions are very different. Context processing in-
structions are ordinary context information, just like location or
client context information.

<tModelInstanceInfo tModelKey="uddi:serviceglobe:context:processing-instructions">
<instanceDetails>

<instanceParms><![CDATA[
<?xml version="1.0" encoding="utf-8" ?>
<pi:ContextProcessingInstructions xmlns:pi="urn:serviceglobe:context">

<pi:ContextType ID="http://sg.fmi.uni-passau.de/context:Location">
<pi:ContextService>
<pi:AccessPoint useType="http">http://example.com/services/CurrencyConverter</pi:AccessPoint>
<pi:ContextOperations>post</pi:ContextOperations>

</pi:ContextService>
<pi:ProcessingGuideline>
<pi:ServiceHost>Next</pi:ServiceHost>
<pi:ComponentTypes>ContextPlugin+ContextService</pi:ComponentTypes>

</pi:ProcessingGuideline>
</pi:ContextType>
<pi:ContextType ID="http://sg.fmi.uni-passau.de/context:Client">

<pi:ContextPlugin>serviceglobe.context.plugins.StylesheetFinder</pi:ContextPlugin>
</pi:ContextType>

</pi:ContextProcessingInstructions>]]>
</instanceParms>

</instanceDetails>
</tModelInstanceInfo>

Figure 10: Context Processing Instructions in the tModelInstanceInfo entry of a bindingTemplate

text plugin instructions must be defined usingContextPlugin el-
ements, context service instructions usingContextService ele-
ments. If several context plugins and services are specified, they
are executed in the same order as they are specified.

In the example in Figure 10, a context service with access
point http://example.com/services/CurrencyConverter

is used for processing Location context. The context framework
supports several types of access points: SOAP-HTTP URLs (as in
the example), ServiceGlobe URLs, or bindingTemplate UUIDs ref-
erencing context services published in a UDDI repository. The in-
structions in the example also state that only the context operation
PostprocessResponse (keyword post) should be invoked. Other
keywords arepre for PreprocessRequest, postmessage for Post-
processMessageRequest, and premessage for PreprocessMes-
sageResponse. Furthermore, the context plugin StylesheetFinder
(specified by its class name) is used for processing Client context
(for a description of this plugin, see Section 5).

Processing Guidelines
With processing guidelines, the types of components that should be
used to process a certain context block are specified as well as the
hosts at which the context block should be processed. A process-
ing guideline is defined using theProcessingGuidelineelement
(which must be a child element of theContextType element for
which the guideline is specified). Figure 10 shows an example.
The child elementServiceHost specifies the host at which corre-
sponding context blocks should be processed, and the child element
ComponentTypes specifies the actual component types that should
be used for processing.

Possible values of theServiceHost element arenext andall.
(The meaning of this element is similar to therole attribute that
can be used in SOAP header blocks [31].) Ifnext is specified,
only the next host should receive and process a context block. For
that reason, the context block is not included into outgoing requests
of the invoked Web service. When usingall, the corresponding
context block is inserted into outgoing requests and all hosts that
receive it may also process it.

Possible values that can be used within theComponentTypes
element areContextPlugin andContextService. The mean-
ing of them is obvious. Both values can be combined using the+
operator. In this case, both components are used sequentially for
processing. In the example of Figure 10, context plugins are ap-
plied first. Then, context services are invoked.

Without any processing guidelines, defaults are used:next for
ServiceHost andContextPlugin for ComponentTypes.

Web services themselves can always access and process any con-
text block passed to them, even if a context block was already pro-
cessed by a context plugin or context service. Obviously, it would
be possible to remove a processed context block from the context
to prevent Web services from processing it a second time. But then,
the context block would only be used to modify the Web services’
messages (due to the constraints of context plugins and context ser-
vices).

Providing Context Processing Instructions
There are several possibilities to make context processing instruc-
tions available to the context framework. The first two possibilities
are especially useful if it should be enforced that only particular
context plugins and context services are used to process context
blocks of certain context types.

First of all, thecontext itself can contain context processing in-
structions. For this purpose, the instructions, e.g., theContext-
ProcessingInstructions element of the example in Figure 10,
are inserted into the context as a self-contained context block. The
context block is then processed by a special context plugin provided
by the context framework.

Second, aWeb service’s UDDI metadata may be annotated with
context processing instructions. Therefore, the bindingTemplate
entry of the Web service must contain a tModelInstanceInfo entry
that specifies the instructions. An example is shown in Figure 10.
The context processing instructions are contained within thein-
stanceParms element (as a string, according to the UDDI stan-
dard6). The format of the context processing instructions is the
same as if used within the context of a SOAP request.

Providers or developers of Web services can use this second op-
tion to specify context services that should be used for processing
certain context blocks. Even operators of hosts executing Web ser-
vices may utilize UDDI this way to force the use of certain con-
text plugins or context services with Web services executed at their
hosts.

The third possibility is different to the preceding ones: Instead
of relying on explicitly specified context processing instructions,

6According to [40], the content of aninstanceParms element
must be of type string. The suggested format is a namespace-
qualified XML document.

<businessService>
<name>CurrencyConverterContextService</name>
<categoryBag>

<keyedReference keyName="ContextService" keyValue="true"
tModelKey="uddi:serviceglobe:interfaces:contextservice"/>

<keyedReference keyName="ContextType"
keyValue="http://sg.fmi.uni-passau.de/context:Location"
tModelKey="uddi:serviceglobe:categorization:contexttypes"/>

</categoryBag>
</businessService>

Figure 11: UDDI Metadata of a Context Service

the context framework uses available UDDI metadata to automat-
ically determine available context services for context processing.
Context plugin instructions and processing guidelines cannot be de-
termined that way.

Just as ordinary Web services, context services may be published
in UDDI. Every context service that should be found by the context
framework when searching for appropriate context services must be
associated to two tModels: the tModelContextService, which
marks a Web service as context service, and the tModelContext-
Type. The latter’s association contains a parameter that specifies
the context type the context service is able to process. For an ex-
ample, see Figure 11. When processing a context block, the frame-
work queries UDDI for all services associated to both tModels and
having the correct parameters. As all of these services provide
semantically equivalent functionality, one of them is chosen ran-
domly. For the future, we are going to consider the utilization of
ServiceGlobe’s dynamic service selection [21, 22] in this process.

4.5 Implementation Status
A prototype implementation of our context framework within the

ServiceGlobe system is completed and its current state is as de-
scribed in this work. There exist also parts that are still subject to
change, e.g., context processing instructions, as we are still inves-
tigating these issues. A number of context types, context services,
context plugins, and example Web services have been implemented
successfully (some are presented in Section 5). But we are still in-
vestigating further possible context types and usage scenarios.

We also finished the implementation of clients for different types
of client devices, e.g., Java-based clients for PDAs and cell phones.
They are used to demonstrate the usefulness and the advantages of
context information based on example Web services of our moti-
vating scenario. Furthermore, we implemented a Web-based client.
With this client, the influence of various types of context informa-
tion can be investigated in more detail. A demonstration of our
context framework and these clients is presented at the EDBT’04
conference [18].

5. CONTEXT TYPES
In this section, several context types are explained that are pro-

vided by our context framework. Our framework is not limited to
this set of context types. As it is extendable at any time, new context
types can be added by inserting corresponding context information
into the context and providing appropriate context services and/or
context plugins for processing it. Neither the context framework
nor Web services must be adjusted for this.

An important context type isLocation. It contains information
about the consumer’s current location, e.g., the consumer’s current
address, GPS coordinates, country, or local time and time-zone. An
example was shown in Figure 6. Location context may also include
semantic location information, e.g., that a consumer is currently at
work. We implemented, e.g., a context service CurrencyConverter

that converts price information in a Web service’s reply into the
currency of the consumer’s location.

Client context information comprises data about a client’s de-
vice. It includes information about hardware, e.g., processor type
or display resolution, as well as software, e.g, operating system
or Web browser type and version. An example of such a context
block was also shown in Figure 6. Two schemas are supported for
this context type: a rather simple one as used in Figure 6 and an
RDF-based one as defined in the CC/PP standard [27] of the W3C.

The main purpose of this context type is to allow Web services
to adjust their output to the client device’s properties. For exam-
ple, Web services from the information systems area, which often
query data from a database management system (DBMS), can use
this context information to optimize their database queries and to
query only data that can actually be displayed at the client. The
Amazon Web service is an example for such a Web service. In its
replies, it includes several lengthy customer reviews. If viewing a
reply of this Web service on a PDA or cell phone, the inclusion of
these reviews is rather pointless as they require too much space.
Optimally, the corresponding data should not be retrieved from the
DBMS in the first place. But if this is not possible, e.g., because
modifications of the Web service are impossible, context services
can be used to adjust the reply of the Web service.

We also implemented a context plugin StylesheetFinder which
uses the Client context to provide the client with a stylesheet that
can be used to format the Web service reply. A Web service must
specify XSL stylesheets that should be used for the various client
types in its UDDI metadata. Figure 12 shows an example for such
metadata. Based on this metadata and the Client context informa-
tion, the plugin inserts a new context block of typeReplyProperties.
This context block, see Figure 13 for an example, is processed by
clients. They use the specified stylesheet to transform the reply’s
XML data into HTML.

TheConsumer context type contains information about the con-
sumer invoking the Web service, e.g., name, email address, and so
on. Although it is very important, it can actually be used only by
the Web services themselves in a sensible way.

TheConnection Preferences context type allows to specify prop-
erties of the connections to Web services. It was added by imple-
menting a context service ConnnectionPreferencesService. Based
on the content of the corresponding context block, the context ser-
vice compresses and decompresses Web service messages using
gzip [7] or the XML compressor XMill [29]. The context service
could, e.g., be extended to support encryption, too.

With these context types, the motivating scenario of Section 2
can be implemented as depicted in Figure 14. Although the At-
tractionsSearch Web service was not modified, the reply that the
client receives contains personalized, context-dependent informa-
tion. Client and Location context information are processed auto-
matically by two context services and one context plugin. After At-
tractionsSearch generated its reply, the context service DrivingDi-
rections uses the RoutePlanner Web service to insert driving direc-

<tModelInstanceInfo tModelKey="uddi:serviceglobe:contexttype:client:stylesheets">
<instanceDetails>

<instanceParms><![CDATA[
<?xml version="1.0" encoding="utf-8" ?>
<UDDIinstanceParmsContainer xmlns="urn:uddi-org:policy_v3_instanceParms">

<Stylesheet deviceType="http://example.com/context/device/PDA">
http://example.org/service-stylesheet-pda.xsl

</Stylesheet>
<Stylesheet deviceType="http://example.com/context/device/Desktop">

http://example.org/service-stylesheet-desktop.xsl
</Stylesheet>

</UDDIinstanceParmsContainer>]]>
</instanceParms>

</instanceDetails>
</tModelInstanceInfo>

Figure 12: UDDI Metadata: Stylesheets for a Web Service’s Reply

<ReplyProperties xmlns="urn:serviceglobe:context">
<Stylesheet>http://example.org/service-stylesheet-desktop.xsl</Stylesheet>

</ReplyProperties>

Figure 13: A Context Block of Context Type ReplyProperties

AttractionsSearch

StylesheetFinder

Context Plugin

Client

Location

RoutePlanner

CurrencyConverter

Context Service

DrivingDirections
Context Service

Client

Figure 14: Example Scenario: Context Processing with the
Context Framework

tions from the client’s location into the reply. Second, the context
service CurrencyConverter transforms all price information in the
AttractionsSearch’s reply into the currency of the consumer’s loca-
tion. Third, the context plugin StylesheetFinder chooses an XSL
stylesheet which fits best to the current client device and inserts
this information into the reply. After the client received the reply,
it uses this stylesheet information to display the XML reply on the
specified device in the appropriate way.

6. RELATED WORK
There are several technologies which are related to our context

processing architecture, i.e., the automatic context processing of
context by successively invoking context plugins and context ser-
vices. The Chain of Responsibility design pattern [11], for ex-
ample, describes how to decouple the receiver of a request from
the sender by chaining the receiving objects and passing the re-
quest along the chain until an object handles it. On the other hand,
in our framework several receivers, i.e., context plugins and ser-
vices, can process the same request. Aspect-oriented programming
(AOP) [24] allows the modification of applications with so-called
aspects. Aspects are modular units of functionality which are used
across the application’s code. They arewoveninto an application’s
code at so-called pointcuts, thereby allowing to transparently ex-
tend, e.g., objects with new functionality. This is similar to the way
Web services are extended with new context processing functional-
ity using context plugins and services. In Java, AOP is supported,
for example, by the AspectJ [23] toolkit or in the J2EE application
server JBoss [16].

In CORBA, technologies like interceptors or smart proxies can

be used to insert new functionality into existing applications. They
are, for example, supported in IANA’s Orbix [15]. Interceptors and
smart proxies have also been integrated in Java RMI [35]. The Java
Servlet specification [39] describes filters that could be used to in-
tercept and modify messages. In the Axis framework [2], chains of
handlers can be created. Requests and responses are passed along
these chains and they may be modified by the chains’ handlers.

Although our context framework shares similarities with the
above approaches, there are also differences. In our framework, the
context information contained within the request determines which
context plugins and context services are actually invoked. Con-
text plugins and services are not chained sequentially and not all
of them are invoked every time. With context services, our con-
text framework is extensible at runtime, just by adding appropri-
ate context information into requests. Furthermore, context plugins
and services selection may depend on the consumer’s preferences,
which can be integrated into the client’s context as context process-
ing instructions. Thus, we facilitate fine-grained, dynamic control
over the context processing.

In the mobile computing area, context has been investigated for
several years. Best known are the location-based services. The
PLIM framework [33], for example, provides an infrastructure for
the distribution and retrieval of location information of (Bluetooth-
connected) mobile devices using a publish/subscribe mechanism.
[14] presents a context model for pervasive systems based on
the CC/PP standard and points out some limitations of this stan-
dard. [12] describes a system that builds a dynamic model of the en-
vironment where the locations of the environment’s objects are up-
dated using location sensors. Also, an event-based monitoring sys-
tem is provided that allows applications to detect location changes
and to query the relationship of objects regarding their location. In
Jini [41], a Java lookup service for services, extensions have been
proposed to support search attributes that provide context informa-
tion about services [28].

In the Web service area, there are several research projects that
deal with context. The CB-SeC framework [32] is an agent-based
architecture that provides service selection based on a rating sys-
tem for Web services, where these ratings are calculated using so-
called context of interest functions and context information about
consumers and services. Aura [38] is an architectural framework
that models user tasks as coalitions of abstract services. Aura
migrates such tasks from one environment to another one, if the
user’s location changes. Also, tasks can be adjusted if the envi-

ronment changes, e.g., if a provider for a currently used service
disappears. In [9], the concept of dynamic bookmarks is presented.
Dynamic bookmarks are descriptions of services that are bound to
actual services based on a user’s location. Clients use a dynamic
bookmark service to update their dynamic bookmarks if their loca-
tion changes. [8] describes a distributed infrastructure to support
context-aware applications based on context widgets. Context wid-
gets gather context information from low-level sensors. They may
also aggregate and interpret it. Applications use these widgets by
subscribing to them. In [30], an architecture is presented which al-
lows to develop applications where the application logic is decou-
pled of the UI based on an event-graph. With it, UIs for different
client types can be developed independent of the implementation
of the application itself.

Our focus in this work is on automatic and transparent process-
ing of context and on easy extensibility of context types, not on
how the context is stored locally at clients. A distributed storage
system for context information is, e.g., presented in [34]. In this
system, context data is pro-actively replicated and migrated on mo-
bile devices, dependent on the clients’ behavior. In [10], a context
service is presented which is basically a storage for context infor-
mation. Context sources deliver their information to this service.
Applications access the context service to query for context infor-
mation. [13] discusses requirements for a representation format
for context information and examines different, existing formats.
As result of the discussion, they present a novel, RDF-based repre-
sentation format. In [36], data about the environment is collected
using collections of low-level sensors. This data is analyzed and
the context—a set of two-dimensional vectors—is updated accord-
ingly. Using a script language, actions can be defined based on
context changes. Actions can, e.g., be commands to applications.

The need for Web service personalization also poses challenges
to other areas of computer science. In the information systems area,
preferences are gaining noticeable attention [25, 1, 5], as they are
a way to support personalization of Web services, especially for
information services that often use a DBMS as backend. Prefer-
ences, also called soft constraints, are more like wishes: The result
of a query should be a perfect match, but a best possible match
is also acceptable. For example, [4] shows how quality of service
preferences can be considered in distributed query processing. Re-
cently, approaches to integrate preferences into Web services have
also been proposed [3, 26].

7. CONCLUSION
In this paper, we presented a context framework that facilitates

the development and deployment of context-aware adaptable Web
services. We introduced our context model and gave a detailed
description of the framework’s main parts: the distributed infras-
tructure, which transmits context between clients and Web services
and manages the context processing, and the context types, which
are extensible at any time.

We showed how the actual context processing is done by Web
services themselves, context plugins, or context services. Context
plugins and context services pre- and post-process Web service
messages based on available context information. Context pro-
cessing instructions, specified within the UDDI metadata of Web
services or within the consumers’ context, are a means to specify
the host to which context is transmitted and at which hosts and by
which components it is actually processed. We also introduced a
basic set of context types that are supported by our context frame-
work.

For the future, we plan to further investigate additional context
types and to study context processing instructions in more detail. A

further issue of interest are security policies that enable clients to
specify which Web services should receive their context and what
operations these services are allowed to perform on it.

8. REFERENCES
[1] R. Agrawal and E. L. Wimmers. A Framework for

Expressing and Combining Preferences. InProc. of the
Intl. Conf. on Very Large Data Bases (VLDB), pages
297–306, 2002.

[2] Axis Architecture Guide.http://ws.apache.org/
axis/java/architecture-guide.html.

[3] W.-T. Balke, W. Kießling, and C. Unbehend. Performance
and Quality Evaluation of a Personalized Route Planning
System. InProc. of the Brazilian Symposium on Databases
(SBBD), pages 328–340, 2003.

[4] R. Braumandl, A. Kemper, and D. Kossmann. Quality of
Service in an Information Economy.ACM Transactions on
Internet Technology (TOIT), 3(4):291–333, 2003.

[5] J. Chomicki. Querying with Intrinsic Preferences. InProc. of
the Intl. Conf. on Extending Database Technology (EDBT),
volume 2287 ofLecture Notes in Computer Science (LNCS),
pages 34–51, 2002.

[6] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Services Description Language
(WSDL) 1.1.http://www.w3.org/TR/wsdl, 2001.
W3C Note.

[7] P. Deutsch. GZIP file format specification version 4.3. RFC
1952, 1996. Network Working Group.

[8] A. K. Dey, D. Salber, and G. D. Abowd. A Context-based
Infrastructure for Smart Environments. InProc. of the
Intl. Workshop on Managing Interactions in Smart
Environments (MANSE), pages 114–128, 1999.

[9] S. Duri, A. Cole, J. Munson, and J. Christensen. An
Approach to Providing a Seamless End-User Experience for
Location-Aware Applications. InProc. of the Intl. Workshop
on Mobile Commerce (WMC), pages 20–25, 2001.

[10] M. Ebling, G. Hunt, and H. Lei. Issues for Context Services
for Pervasive Computing. InProc. of the Advanced
Workshop on Middleware for Mobile Computing, 2001.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1997.

[12] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster.
The Anatomy of a Context-Aware Application.Wireless
Networks, 8(2-3):187–197, 2002.

[13] A. Held, S. Buchholz, and A. Schill. Modeling of Context
Information for Pervasive Computing Applications. In
Proc. of the World Multiconference on Systemics,
Cybernetics and Informatics (SCI), 2002.

[14] J. Indulska, R. Robinson, A. Rakotonirainy, and
K. Henricksen. Experiences in Using CC/PP in
Context-Aware Systems. InProc. of the Intl. Conf. on Mobile
Data Management (MDM), volume 2574 ofLecture Notes in
Computer Science (LNCS), pages 247–261. Springer, 2003.

[15] IONA Technologies Inc. Orbix.
http://www.iona.com/products/orbix.htm.

[16] JBoss Aspect Oriented Programming.http://www.
jboss.org/developers/projects/jboss/aop.

[17] C. Kaler, editor. Web Service Security (WS-Security).
http://www-106.ibm.com/developerworks/
webservices/library/ws-secure/, 2002.

[18] M. Keidl and A. Kemper. A Framework for Context-Aware
Adaptable Web Services (Demonstration). InProc. of the
Intl. Conf. on Extending Database Technology (EDBT),
2004. Accepted for publication.

[19] M. Keidl, S. Seltzsam, and A. Kemper. Flexible and Reliable
Web Service Execution. InProc. of the Workshop on
Entwicklung von Anwendungen auf der Basis der XML
Web-Service Technologie, pages 17–30, 2002.

[20] M. Keidl, S. Seltzsam, and A. Kemper. Reliable Web Service
Execution and Deployment in Dynamic Environments. In
Proc. of the Intl. Workshop on Technologies for E-Services
(TES), volume 2819 ofLecture Notes in Computer Science
(LNCS), pages 104–118, 2003.

[21] M. Keidl, S. Seltzsam, C. K¨onig, and A. Kemper.
Kontext-basierte Personalisierung von Web Services. In
Proc. of the GI Conf. on Database Systems for Business,
Technology and Web (BTW), Lecture Notes in Informatics,
pages 344–363, 2003.

[22] M. Keidl, S. Seltzsam, K. Stocker, and A. Kemper.
ServiceGlobe: Distributing E-Services across the Internet
(Demonstration). InProc. of the Intl. Conf. on Very Large
Data Bases (VLDB), pages 1047–1050, 2002.

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An Overview of AspectJ. InProc. of the
European Conf. on Object-Oriented Programming
(ECOOP), pages 18–22, 2001.

[24] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. InProc. of the European Conf. on
Object-Oriented Programming (ECOOP), pages 220–242,
1997.

[25] W. Kießling. Foundations of Preferences in Database
Systems. InProc. of the Intl. Conf. on Very Large Data Bases
(VLDB), pages 311–322, 2002.

[26] W. Kießling and B. Hafenrichter. Optimizing Preference
Queries for Personalized Web Services. InProc. of the
IASTED Intl. Conf. on Communications, Internet and
Information Technology, pages 461–466, 2002.

[27] G. Klyne, F. Reynolds, C. Woodrow, H. Ohto, J. Hjelm,
M. H. Butler, and L. Tran. Composite Capability/Preference
Profiles (CC/PP): Structure and Vocabularies.
http://www.w3.org/TR/CCPP-struct-vocab/,
2004. W3C Recommendation.

[28] C. Lee and S. Helal. Context Attributes: An Approach to
Enable Context-awareness for Service Discovery. InProc. of
the Symposium on Applications and the Internet (SAINT),
pages 22–30, 2003.

[29] H. Liefke and D. Suciu. XMill: An Efficient Compressor for
XML Data. In Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data, pages 153–164, 2000.

[30] G. Menkhaus. Architecture for Client-Independent
Web-Based Applications. InProc. of the Intl. Conf. on
Technology of Object-Oriented Languages and Systems
(TOOLS), pages 32–40, 2001.

[31] N. Mitra, editor. SOAP Version 1.2 Part 0: Primer.
http://www.w3.org/TR/soap12-part0/, 2003.
W3C Recommendation.

[32] S. K. Mostéfaoui and G. K. Most´efaoui. Towards A
Contextualisation of Service Discovery and Composition for
Pervasive Environments. InProc. of the Workshop on
Web-services and Agent-based Engineering (WSABE), 2003.

[33] A. J. H. Peddemors, M. M. Lankhorst, and J. de Heer.
Presence, Location, and Instant Messaging in a
Context-Aware Application Framework. InProc. of the
Intl. Conf. on Mobile Data Management (MDM), volume
2574 ofLecture Notes in Computer Science (LNCS), pages
325–330, 2003.

[34] S. Riché and G. Brebner. Storing and Accessing User
Context. InProc. of the Intl. Conf. on Mobile Data
Management (MDM), volume 2574 ofLecture Notes in
Computer Science (LNCS), pages 1–12, 2003.

[35] N. Santos, P. Marques, and L. Silva. A Framework for Smart
Proxies and Interceptors in RMI. InProc. of the Intl. Conf. on
Parallel and Distributed Computing Systems (PDCS), 2002.

[36] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. Van
Laerhoven, and W. Van de Velde. Advanced Interaction in
Context. InProc. of the Intl. Symposium on Handheld and
Ubiquitous Computing (HUC), volume 1707 ofLecture
Notes in Computer Science (LNCS), pages 89–101, 1999.

[37] S. Seltzsam, S. B¨orzsönyi, and A. Kemper. Security for
Distributed E-Service Composition. InProc. of the
Intl. Workshop on Technologies for E-Services (TES),
volume 2193 ofLecture Notes in Computer Science (LNCS),
pages 147–162, 2001.

[38] J. P. Sousa and D. Garlan. Aura: an Architectural Framework
for User Mobility in Ubiquitous Computing Environments.
In Proc. of the Working IEEE/IFIP Conf. on Software
Architecture (WICSA), pages 29–43, 2002.

[39] Sun Microsystems Inc. The Java Servlet Specification 2.4.
http://java.sun.com.

[40] Universal Description, Discovery and Integration (UDDI)
Technical White Paper.http://www.uddi.org, 2000.

[41] J. Waldo. The Jini Architecture for Network-centric
Computing.Communications of the ACM, 42(7):76–82,
1999.

