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Abstract

We present the design of ObjectGlobe, a distributed and open query processor. Today, data is published
on the Internet via Web servers which have, if at all, very localized query processing capabilities. The
goal of the ObjectGlobe project is to establish an open market place in whichdata andquery processing
capabilitiescan be distributed and used by any kind of Internet application. Furthermore, ObjectGlobe
integratescycle providers(i.e., machines) which carry out query processing operators. The overall picture
is to make it possible to execute virtually any kind of query operator on any machine and any kind of data
on the Internet. One of the main challenges in the design of such an open system is to ensure privacy
and security. We discuss the ObjectGlobe security requirements, show how basic components such as the
optimizer and runtime system need to be extended, and present the results of performance experiments that
assess the additional cost for secure distributed query processing.

1 Introduction

The World Wide Web has made it very easy and cheap for people and organizations all over the world to
exchangedata. Today, virtually everybody can publish a document by generatingHTML(or XML) and placing
it on some Web server; likewise, it is more or less standard to make data stored in relational (or other) databases
publicly available on the Web by establishing form-based interfaces and by using CGI scripts or Servlets.
WWW clients can retrieve individual documents by a simple “click” and they can get specific information from
a database (behind the Web server) by filling out a form. In other words, WWW clients today can easily execute
“point queries” (i.e., given URL, return document) and they can execute queries that can be handled by a single
database behind a Web server.

The goal of the ObjectGlobe project is twofold. First, we would like to create an infrastructure that makes it
as easy to distributequery processing capabilities(i.e., query operators) as it is to publish data and documents
on the Web today. Second, we would like to enable clients to execute complex queries which involve the
execution of operators from multiple providers at different sites and the retrieval of data and documents from
multiple data sources. In contrast to Applets, all query operators should be able to interact in a distributed query
plan and it should be possible to move query operators to arbitrary sites, including sites which arenear the data.
The only requirement we make is that all query operators must be written in Java and conform to the secure
interfaces of ObjectGlobe.

∗This research is supported by the German National Research Foundation under contract DFG Ke 401/7-1
†Contact author: Reinhard Braumandl
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We believe that our ObjectGlobe system can help to develop new application scenarios and new ways in
which people and organizations interact on the Internet. An organization, for instance, could outsource all or
part of its data processing to specialized providers on the Internet. As another example, WWW clients can
querythe Web and carry out different operations on different data sources. Providers could charge for data and
new query operators. A data provider (e.g., a car dealer) could also be interested in participating in ObjectGlobe
in order to supply its product catalog for free. Open, distributed query processing, as in ObjectGlobe, is an es-
sential enabling technology for scalable Internet applications, such as business-to-business (B2B) e-commerce
systems like SAP’s “mySAP.com” [SAP99] virtual marketplace which comprises hundreds of companies. One
of the key challenges is to facilitate query processing over the various heterogeneous data sources in order to
build integrated product catalogs, match product availability with demand forecasts, or perform price compar-
isons for procurement. Furthermore, ObjectGlobe can serve as an experimental research platform in order to
test new distributed query processing techniques.

In some sense, the ObjectGlobe system can be seen as a distributed query processor. ObjectGlobe has a
lookup service (i.e., a meta-data repository) which registers all data sources, operators, and machines on which
queries can be executed. The lookup service is used by the ObjectGlobe optimizer in order to discover relevant
resources for a query. The optimizer generates a query evaluation plan with the goal to execute the query with
as little cost as possible. This plan is then initiated and executed by the execution engine. The design of all of
these components has been addressed in previous work. Jini, for example, has a related lookup service [Wal99],
and projects like Mariposa [SAL+96] or Garlic [HKWY97] (to name just two) have recently studied wide-area
distributed query processing. What makes the ObjectGlobe system special is its “brutal” openness that in
principle allows to execute any kind of (Java) operation on any machine and on any kind of data. One particular
issue that needs to be addressed in this kind of system is “security” and how to protect data (and other resources)
from unauthorized access. Another challenge is to ensure scalability in the number of sites. In this paper, we
will describe the approaches we have chosen to address these challenges and give some initial performance
results obtained using our system. The development of techniques for “schema integration” in a distributed
and heterogeneous environment is not the target of our work because this has been addressed in other work
(e.g., [SL90]); we assume that all data is in a standard format (e.g., relational or XML) or wrapped [RS97].
Although, “selling” services is one of the main motiviations for our project, the system does not require a
particular business model; many different business models can be implemented on top of ObjectGlobe.

The remainder of this paper is structured as follows: Section 2 gives an overview of the ObjectGlobe system
and compares it with other system architectures. Sections 3 and 4 describe the basic components of the system.
Section 5 contains the results of some initial performance experiments conducted with ObjectGlobe on the
Internet. Section 6 concludes this paper.

2 Overview of the ObjectGlobe System

The goal of the ObjectGlobe project is to distribute powerful query processing capabilities (including those
found in traditional database systems) across the Internet. The idea is to create an open market place for
three kinds of suppliers:data providerssupply data,function providersoffer query operators to process the
data, andcycle providersare contracted to execute query operators. Of course, a single site (even a single
machine) can comprise all three services, i.e., act as data-, function-, and cycle-provider. In fact, we expect that
most data and function providers will also act as cycle providers. ObjectGlobe enables applications to execute
complex queries which involve the execution of operators from multiple function providers at different sites
(cycle providers) and the retrieval of data and documents from multiple data sources. In this section, we will
outline how such queries are processed, give an example, and discuss the security requirements of the system.
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Figure 1: Processing a Query in ObjectGlobe

2.1 Query Processing in ObjectGlobe

Processing a query in ObjectGlobe involves four major steps (Figure 1):

1. Lookup: In this phase, the ObjectGlobe lookup service is queried to find relevant data sources, cycle
providers, and function providers that might be useful to execute the query. In addition, the lookup service
provides the authorization data—mirrored and integrated from the individual providers—to determine
what resources may be accessed by the user who initiates the query and what other restrictions apply for
processing the query.

2. Optimize: From the information obtained from the lookup service, a cost-based query optimizer com-
piles a low-cost and valid (as far as user privileges are concerned) query execution plan. This plan is
annotated with site information indicating on which cycle provider each operator is executed and from
which function provider the external query operators involved in the plan are loaded.

3. Plug: The generated plan is distributed to the cycle providers and the external query operators are loaded
and instantiated at each cycle provider. Furthermore, the communication paths (i.e., sockets) are estab-
lished.

4. Execute: The plan is executed following an iterator model [Gra93]. In addition to theexternalquery
operators provided by function providers, ObjectGlobe hasbuilt-in query operators for selection, pro-
jection, join, union, nesting, unnesting, and sending and receiving data. If necessary, communication is
encrypted and authenticated. Furthermore, the execution of the plan is monitored in order to interfere
with and possibly halt the execution of the whole plan in case of failures.

The whole system is written in Java, for two reasons1. First, Java isportable so that ObjectGlobe can be
installed with very little effort; in particular, cycle providers which need to install the ObjectGlobe core func-
tionality can very easilyjoin an ObjectGlobe system. The only requirement is that a site runs a Java virtual
machine. Second, Java provides secure extensibility. Like ObjectGlobe itself, external query operators are
written in Java, they are loaded on demand (from function providers), and they are executed at cycle providers
in their own Java “sandbox” (more details in Section 4). To provide an external query operator a simple uni-
form interface must be implemented; in addition, the new external query operator must be registered in the
lookup service. Likewise, data providers and cycle providers must register in the lookup service before they
can participate.

ObjectGlobe supports a nested relational data model; this way, relational, object-relational, andXMLdata
sources can very easily be integrated. Other data formats (e.g.,HTML), however, can be integrated by the
use of wrappers that transform the data into the required nested relational format; wrappers are treated by the
system as external query operators. As shown in Figure 1,XMLis used as a data exchange format between the
individual ObjectGlobe components. Part of the ObjectGlobe philosophy is that the individual ObjectGlobe

1Currently, the optimizer is written in C++, but we are planning to rewrite it in Java.
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Figure 2: (a) Distributed Query Processing with ObjectGlobe, (b) Annotated Query Execution Plan

components can be used separately;XMLis used so that the output of every component can easily be visualized
and modified. For example, a user can browse through the lookup service in order to find interesting functions
which he/she might want to use in the query. Furthermore, a user can look at and change the plan generated by
the optimizer.

2.2 An Example

To illustrate query processing in ObjectGlobe, let us consider the example shown in Figure 2(a)—the corre-
sponding XML query plan is sketched in Figure 2(b). In this example, there are two data providers,A and
B, and one function provider. We assume that the data providers also operate as cycle providers so that the
ObjectGlobe system is installed on the machines ofA andB. Furthermore, the client (not shown in Figure 2(a))
can act as a cycle provider in this example. Data providerA supplies two data collections, a relational tableR
and some other collectionS which needs to be transformed (i.e., wrapped) for query processing. Data provider
B has a (nested) relational tableT . The function provider supplies two relevant query operators: a wrapper
(wrap S) to transformS into nested relational format and a compression algorithm (thumbnail) to apply on an
image attribute ofT .

Figure 2(b) shows the most important annotations—in particular, thehost, source, andcodeBaseannotations—
of theXMLquery plan. (The realXMLplan is given in Appendix A.) Thehostannotation of an operator indicates
at which machine (i.e., cycle provider) the operator is executed; e.g., the final join and thedisplayoperators are
executed at the client. Thesourceannotation of ascaniterator indicates which collection is to be read. The
codeBaseannotation indicates from which function provider an external query operator is read.scan, display,
and thejoins are built-in operators so that they do not have acodeBaseannotation.

2.3 Privacy and Security Requirements in ObjectGlobe

Safety is one of the crucial issues in an open and distributed system like ObjectGlobe. ObjectGlobe provides
the infrastructure to deal with the following privacy and security issues:

Protection of Cycle and Data Providers: It has to be ensured that the resources of the cycle and data providers
are protected from (possibly malicious) external operators loaded from unknown function providers.
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Figure 3: Query Evaluation in a Middleware System

Based on the Java security model, all query operators are therefore executed in a protected area, a so-
calledsandbox(Section 4.3).

Privacy and Confidentiality: Data and function code that is processed in the ObjectGlobe system is protected
against unauthorized access and manipulation. The communication streams between the ObjectGlobe
servers are protected using well-established secure communication standards (SSL and TLS) for en-
crypting and authenticating (digitally signing) messages. Furthermore, confidential information or func-
tion code is protected from being transferred to untrusted cycle providers by enforcing an authorization
scheme on the flow of data and function code specified in the site annotations of the query plan.

Authentication: ObjectGlobe supports a flexible authentication policy. Users and applications that only access
free and publicly available resources can be anonymous and no authentication is required. If a user
accesses a resource that charges and accepts electronic money, then the user can again stay anonymous
and the electronic money is shipped as part of the “plug” step. Authentication is only required for
authorization or accounting purposes of providers; in this case, users must provide certificates or other
authentication information (e.g., passwords). Cycle providers can also require authenticated external
operators to restrict the providers; e.g., to execute only code originating from trusted sources within the
same company or Intranet.

Authorization: Some providers constrain the access or use of their resources to particular user groups. As
already mentioned, providers can also constrain the information (function code) flow to ensure that only
trusted cycle providers are used in the query execution plan. In general, providers apply their own au-
tonomous authorization policy and control the execution of, say, query operators at their site themselves.
In order to generate valid query execution plans and avoid failures at execution time, ObjectGlobe must
know about these authorization constraints and register them in its lookup service.

2.4 Comparison to Other System Architectures

Distributed database systems have been studied since the late seventies in projects like System R∗, SDD-1, or
Distributed Ingres. ObjectGlobe shares with all these projects the vision that a distributed system can be used as
easily as a centralized system (i.e., transparency) and that good performance can be achieved by sophisticated
query optimization. The architecture of ObjectGlobe is more general than that of a traditional system like
System R∗. In a traditional system, every site acts as a data and cycle provider which executes built-in query
operators; obviously, ObjectGlobe supports such a scenario as well. In addition, ObjectGlobe provides the
flexibility to integrate external operators and a large number of non-database (legacy) data sources.

Today, external operators and/or legacy data sources are typically integrated using a middleware archi-
tecture; examples are Garlic [C+95], TSIMMIS [PGGMU95], DISCO [TRV98], Tukwila [IFF+99], or the
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Information Manifold [LRO96]. Again, ObjectGlobe’s architecture is more flexible, resulting in better perfor-
mance. Let us see how our example query would be processed in a middleware system. As shown in Figure 3,
middleware systems can only exploit the (limited) query processing capabilities that are hard-wired into the
(legacy) data sources. If new operators are needed, such aswrap Sandthumbnail, these operators are executed
in the middleware. As a result, a middleware system incurs high communication costs for shipping the data
to the middleware; i.e., for data shipping [FJK96]. ObjectGlobe helps reduce such communication costs by
allowing to execute new and external query operators at or near the (legacy) data providers.

Various aspects of the ObjectGlobe project have already been studied in other projects. The notion of an
open market place in which different providers compete for queries is borrowed from Mariposa [SAL+96]—
even though, ObjectGlobe does not enforce a particular business model like Mariposa. Extensibility has been
studied in a number of database projects; e.g., Postgres [SR86], Starburst [HCL+90], or more recently in
Predator [SLR97]. The safe execution of external functions has been studied in [GMSvE98], but the scope of
that work is too limited for our context.

There has also been a large body of related work on the integration of services in open distributed object
systems. The most prominent examples are Jini [Wal99] and CORBA [MZ95]. A related lookup service is
HP’s Chai (Plug & Play) system [HPI99]. Architectures for distributed object systems have been devised in
the SHORE [CDF+94], Ninja [GWBC99], and AutO [Kri98] projects. The AutO project was also conducted
at the University of Passau and we adopted many results such as the AutO security model and infrastruc-
ture for ObjectGlobe. As part of the Ninja project, a secure distributed directory service has been devel-
oped [CZH+99]. ObjectGlobe’s lookup-service also bears some similarity with X.500 [CCI88] and LDAP
directory services [WHK97]. What makes ObjectGlobe different from all these works is that ObjectGlobe is
capable of complex query processing; that is, a single ObjectGlobe query can involve the lookup and execution
of many different services and it requires optimization because of the large amounts of data that need to be
processed. In this respect, ObjectGlobe’s lookup service is similar to [MRT98]’s WebSemantics project which
uses Web documents to publish the location of components (wrappers and data sources) and a uniform query
language to locate data sources based on this metadata and to access the sources.

In other lines of work, researchers have tried to “query the Web” using languages like WebSQL [MMM97,
KS98]; these efforts, however, only support a navigational style of access of Web pages. Junglee [GHR97]
follows a data warehousing approach in order to integrate Internet data for query processing. Furthermore,
Web site management has been studied in a few recent projects; e.g., Strudel [FFK+98]. The goal of systems
like Strudel, however, is to improve the services (and manageability) of a single site, rather than integrating
services from multiple sites.

3 Generating Query Plans

In this section, we show how ObjectGlobe produces a plan for a query; the next section then shows how such
a plan is executed. Currently, ObjectGlobe supports a subset of SQL; ObjectGlobe, however, does support the
use of external functions as part of a query. Like any other query processor, ObjectGlobe parses, optimizes,
and executes a query. In this section, we describe the ObjectGlobelookup servicethat finds relevant resources
for a query and the parser and optimizer that try to find a good plan to execute a query.

3.1 Lookup Service

The lookup service plays the same role in ObjectGlobe as thecatalogor meta-data managementof a tradi-
tional query processor. Every provider must register its services before it can participate in ObjectGlobe. The
ObjectGlobe parser and optimizer consult the lookup service in order to find all relevant resources to execute
a query and get statistics. Furthermore, end users can use the lookup service to browse through the meta-data
and search for available query capabilities and data sources for their applications.
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3.1.1 ObjectGlobe Meta-data

The ObjectGlobe lookup service records the following information:

• data provider: each collection of objects stored by a data provider and theattributes of each col-
lection are recorded by the lookup service. Each collection is associated to atheme; for example,
www.HotelBook.com andwww.HotelGuide.com provide two different collections associated to
the themehotel. A collection can be seen as a horizontal (possibly overlapping) partition, but two collec-
tions of the same theme may have different attributes. In addition, alliterators that can be used to scan
through a collection are recorded. Furthermore, the lookup service records if a collection provided by a
data provider is a replica (i.e., mirror) of a collection provided by some other data provider.

• cycle provider: the CPU power, size of main memory, and temporary disk space of each cycle provider
is recorded.

• function provider: the name and signature of each query operator is recorded. Furthermore, the require-
ments in terms of CPU speed, size of main memory and disk space to execute each query operator is kept
by the lookup service. ObjectGlobe differentiates betweeniterators like join or display andtransformers
such asthumbnail. (In addition, ObjectGlobe also has special categories forpredicatesandaggregate
functions.) Any kind of function, however, will automatically be wrapped by ObjectGlobe into an it-
erator so that we ignore these distinctions in this paper and use the wordsfunctionandquery operator
interchangeably for the general concept.

• statistics: the lookup service stores any available information that helps the optimizer to estimate the
cost (in $ and in response time) of a plan; e.g., histograms to estimate the selectivity of simple (i.e., non-
external) predicates, latency and bandwidth of the interconnects between two cycle providers, typical
load of cycle providers as a function of time, and possibly theURL of functions that can be used to
estimate the cost of query operators.

• authorization information: the lookup service maintains authorization information—obtained/mirrrored
from the providers—that indicates which data may be processed at which cycle provider and by which
query operator. To guarantee privacy and confidentiality, the providers can also restrict the flow of in-
formation (and code) in order to prevent data (and functions) from being processed on untrusted cycle
providers. Following the ObjectGlobe authorization model, it is possible to specify positive and neg-
ative authorizations [RBKW91, BJS99]. Also, it is possible to group collections, functions, and cycle
providers into “authorization classes”—using role-based authorization [SCFY96]—in order to reduce the
overhead of maintaining and processing this information in the lookup service.

To give a concrete example, Appendix B shows an exampleRDFdocument that can be used by a data provider
that registers ahotelcollection. It is important to keep in mind that all providers are autonomous and have their
own local authorization policies. The meta-data kept in the lookup service mirrors that information and, thus,
this meta-data can be outdated or incomplete. It is possible, for instance, that a data provider revokes the grant
of some cycle providers to process its data without notifying the lookup service; as a result, the execution of an
ObjectGlobe query might fail due to an authorization violation at execution time. ObjectGlobe relies on data,
function, and cycle providers notifying the lookup service if important meta-data changes. If a plan fails due
to stale meta-data in the lookup service, all the relevant meta-data is invalidated so that providers that do not
update their meta-data do not participate in the ObjectGlobe federation. As an alternative, [CZH+99] propose
to use atime-to-livescheme; in that scheme, providers must periodically contact the lookup service if they want
to participate in the federation.
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searchDataProvider d
selectd.uniqueId, d.attr.∗
whered.theme.name = “hotel”

and d.attr.?.topic = “city”
and d.attr.?.topic = “price”

Figure 4: Example Search Query

<collection>
<uniqueId> 4711 </uniqueId>
<attr topic = "city", type = "String"/>
<attr topic = "price", type = "US-Dollar"/>
<attr topic = "address", type = "String"/>

</collection>

Figure 5: Example Search Result

3.1.2 Using the ObjectGlobe Lookup Service

As mentioned before, data, function, and cycle providers generateRDFdocuments in order to register their
services. We useRDFbecause it is very flexible and a WWW standard for describing resources [BG99].
Typical providers, such as relational orXMLdata sources, can very easily be described usingRDF; it is also
possible to automatically produce large fractions of anRDFdescription from, say, anXML DTDor a relational
schema.RDFis also used to update the meta-data if a provider changes or extends its services and theid of an
RDFobject is used to unregister (i.e., delete) services.

To find relevant resources and retrieve statistics and authorization information, the lookup service provides a
declarative query language. As an example, Figure 4 shows how to ask the lookup service for all data providers
that supplyhotelcollections. More specifically, the query of Figure 4 asks forhotelcollections which havecity
andprice attributes and the query asks for theid of the collection and information about allattributes. (The “?”
in the query is ananyoperator.) The result of this query is shown in Figure 5; here, we show the results for the
hotelcollection specified in theRDFdocument of Appendix B.

The lookup service also allows the definition of views. These views can be materialized. Such materialized
views are very helpful to supportsessionsin which search results are iteratively refined. For example, it is
possible to first ask for all cycle providers which are allowed to process objects of a specific collection and
then, in a separate search request, ask which ofthesecycle providers are capable to execute a specific query
operator.2 This feature is important for parsing and optimization and for users who interactively browse the
meta-data.

3.1.3 Implementation Details

The lookup service is currently implemented on top of a relational database system. Meta-data (i.e.,RDF
documents) are mapped to binary tables as described in [FK99]. Search requests are translated into SQL join
queries. This translation is not one-to-one as the lookup service hides the details of how the meta-data is stored.
Clients of the lookup service, for example, can ask for all cycle providers that are allowed to process objects of a
specific collection; the lookup service will answer such a query considering all groups of cycle providers as well
as all positive and negative authorizations. Translating search requests into SQL queries is quite complicated
(albeit straightforward) and describing all the details is beyond the scope of this paper.

Currently, the lookup service is implemented as a centralized component of the ObjectGlobe system. Ob-
viously, a centralized lookup service can easily become a bottleneck of the whole system. Therefore, we are
currently working towards a distributed/hierarchical lookup service (similar to the hierarchical name server we
described in [EKK97]) with domain-specific replication and caching of meta-data.

3.2 Parser and Optimizer

Plans for a query are generated by the ObjectGlobe query parser and optimizer. As shown in Figure 1, the
parser looks up the relevant resources for a query and the optimizer produces a plan based on (a subset of) these

2Of course, these cycle providers could also be found in a single search request.
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resources.

3.2.1 Parser

The main effort carried out during parsing is to issue search requests to the lookup service in order to discover
all relevant resources (i.e., data, function, and cycle providers). The parser aborts the processing of a query if
for some part of the query, no resources can be found. Not surprisingly, relevant data providers are found using
the themesspecified in theFROMclause of a query. For everytheme, the lookup service registers no, one, or
severalmatchingcollections from different data providers; a collection matches if it has the same theme and its
objects have all the attributes used in theSELECTandWHEREclauses of the query. A typical search request
to find relevant data providers is given in Figure 4. Likewise, the parser looks for function providers for each
external function used in a query; again, external functions such asthumbnailcan have several implementations
from different function providers; all implementations that match the right name and signature are considered.
Query operators such asjoin, union,or displayare typically implicit in a query; forjoin andunion the parser
will consider built-in variants and all variants provided by function providers. Fordisplay, the parser will
always consider ObjectGlobe’s built-in variant which producesXMLto represent query results; the parser will
only consider a differentdisplayoperator if this is explicitly requested.

In theory, every cycle provider can be useful to execute a query. Consideringall cycle providers for every
individual query would simply be infeasible. To find relevant andinterestingcycle providers, data and function
providers can register a set ofpreferred cycle providersto handle their data or execute their functions; this set of
preferred cycle providers will typically include the machines of the data or function provider. In addition, each
ObjectGlobe end user (or application programmer) can specify a set of preferred cycle providers; this set may
include the client machine of the user. For a given query, the parser determines the overall set of interesting
cycle providers from the preferred cycle providers of the user and of all relevant data and function providers.
From this set, the parser will further prune cycle providers which are clearly not useful; e.g., cycle providers
which are not allowed to process any function. It should be noted that registering preferred cycle providers is
optional; therefore, it is possible that the parser stops processing a query if neither the user nor any relevant
data or function provider have specified preferred cycle providers, although the query could be executed using
non-preferredsites.

In addition to discovering all relevant resources, the parser consults the lookup service in order to retrieve
all available statistics and authorization information. As a result, the parser produces a (quite complex)XML
document which is then used by the optimizer in order to generate a plan. Figure 6 shows how the authorization
and applicability information is represented as acompatibility matrixfor the collections, functions, and cycle
providers of the example of Section 2.2. For each relevant data collection such a compatibility matrix is gener-
ated by the parser. A point at(c, f) in a matrix of a collection is set if cycle providerc is authorized to see the
collection, functionf is authorized to process objects of the collection,c is authorized to executef , andc is
capable of executingf (i.e., has enough memory and disk space). For instance,wrap Smay be executed at all
cycle providers in order to read collectionS, but it may obviously not be used anywhere to read collectionR or
T . In the matrix, built-in query operators such asdisplay, scan, andjoin are treated in the same way as external
functions (e.g.,thumbnailandwrap S); it would be possible, for instance, that a cycle provider only allows its
own join methods to be executed on its machines.

3.2.2 Optimizer

The goal of the optimizer is to find a good plan to execute a query, if a plan exists. The “if a plan exists” part
is important because the ObjectGlobe optimizer, unlike a traditional optimizer, might sometimes fail to find a
plan, even if the parser was able to discover relevant resources. First of all, limitations due to authorizations
can make it impossible to find a valid plan; for instance, it might happen that two collections cannot be joined
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Figure 6: Compatibility Matrices for the Example of Section 2.2

because there is no cycle provider that has permission to see both collections. Furthermore, ObjectGlobe users
and applications can limit the total cost (in $) and response time of a query; this is an idea adopted from
Mariposa [SAL+96].

The optimizer enumerates alternative plans using a System-R style dynamic programming algorithm. That
is, the optimizer builds plans in a bottom-up way: first so-calledaccess plansare constructed that specify how
each collection is read (i.e., at which cycle provider and with whichscanor wrapperoperator). After that,join
plansare constructed from theseaccess plansand (later) from simplerjoin plans. To deal with unary external
functions and predicates, the dynamic programming algorithm is extended as described in [CS96]. In every
step, the cost of each plan is estimated and inferior plans are pruned in order to speed up the optimization
process. Rather than presenting the full details of the ObjectGlobe optimizer, we would like to highlight the
peculiarities that make the ObjectGlobe optimizer special:

Compatibility Matrix During query optimization every plan is annotated (among others) with a compati-
bility matrix. The compatibility matrix of an access plan is identical with the compatibility matrix generated
by the parser for the corresponding collection. The matrix of a join plan which is composed of two sub-plans
is generated by ANDing the two compatibility matrices of the two sub-plans, resulting in a more restrictive
matrix.

Sanity Checks Some sub-plans can be immediately discarded during plan enumeration based on the sub-
plan’s compatibility matrix. As an example, consider the following situation: collectionsR1 andR2 belong to
the same themeR and a query is interested inf(R) for some external functionf . For collectionR1, f may
only be executed by cycle providerx; for collectionR2, f may only be executed by cycle providery. Now
a sub-planR1 ∪ R2 can immediately be discarded because there is no way to executef on top ofR1 ∪ R2

(neitherx nor y work); in other words, theR1 ∪ R2 plan has no points set in thef row of its compatibility
matrix. (Note, however, that anf(R1) ∪ f(R2) plan is valid, if it is equivalent.) If several variants off exist,
then theR1 ∪ R2 plan can be discarded if there is no point set in theshelf of f rows. (A shelf is a set of rows
in the matrix for different variants of the same function.) Obviously, a plan can also be immediately discarded
if its estimated cost or response time exceeds the specified limit.

We also carry out more sophisticated sanity checks at the beginning of query optimization. For example,
there must be at least one cycle provider which has permission and is capable to execute thedisplayoperator
for each collection. Typically, this must be the client machine at which the query was issued. If such a cycle
provider does not exist, then no plan exists and the optimizer can stop without enumerating any plans. In
theory, such sanity checks that span several compatibility matrices could be applied in order to discard certain
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sub-plans during the plan enumeration process; since these sanity checks are quite costly, however, they are
only carried out once, at the beginning before plan enumeration starts.

UNION Queries As shown earlier, collections can be horizontal partitions which need to beunionedand dif-
ferent collections of the same theme can have different authorization requirements (i.e., different compatibility
matrices). As a result, the optimizer must consider each collection individually, even collections of the same
theme which are not treated individually by traditional optimizers. Considering every collection individually
involves extending the dynamic programming algorithm for plan enumeration; essentially, the optimizer enu-
meratesR1 ∪ R2 in the same way as a two-way join plan andR1 ∪ R2 ∪ R3 in the same way as a three-way
join plan, if R1, R2, R3 belong to the same theme. The ObjectGlobe optimizer would also consider plans like
(R1 ∪ R2) � S as well as(R1 � S) ∪ (R2 � S) for queries that involve these three collections.

Costing To estimate the cost (in $) and response time of a plan the optimizer completely relies on the statistics
and cost functions registered in the lookup service. In the absence of such statistics, the ObjectGlobe optimizer
will guess(i.e., use default values), just as any other optimizer. More work on costing in distributed and het-
erogeneous query processors has been reported in [ROH99]. Costing in the ObjectGlobe optimizer is currently
very simple, but we are planning to extend our costing framework along the lines proposed in [ROH99].

IDP Evidently, the search space can become too large for full dynamic programming to work for complex
ObjectGlobe queries. To deal with such queries, we developed another extension that we calliterative dynamic
programming(IDP for short). IDP is adaptive; it starts like dynamic programming and if the query is simple
enough, thenIDP behaves exactly like dynamic programming. If the query turns out to be too complex, then
IDP applies heuristics in order to find an acceptable plan. Details and a complete analysis ofIDP is given
in [KS00].

4 Query Plan Distribution and Execution

As mentioned before, ObjectGlobe was implemented in Java for two reasons: portability and security. In this
section we will describe how we utilized Java’s features to achieve extensibility and query operator mobil-
ity without compromising security. We will also describe ObjectGlobe’s monitor concept for controlling the
progress of distributed query plans.

4.1 Distributing Query Evaluation Plans

Query plans are distributed in a straightforward way using thehost annotations of the iterators in the plan.
Every cycle provider loads the code of the external operators with a specialized ObjectGlobe class loader
(OGClassLoader); theURLof the code is given in thecodeBaseannotation. If a cycle provider requires that
the code is signed (authenticated), then the OGClassLoader will check the signature of the code. Furthermore,
all communication paths are established by (built-in) send and receive iterators. If desired (i.e., specified in the
annotations of the plan), an SSL (Secure Sockets Layer) connection is established. SSL [FKK96]3 is a de-facto
standard for providing privacy and reliability of network communication by encrypting network traffic and
checking the data integrity using Message Authentication Codes (MAC). Also, the SSL protocol can carry out
the authentication of both ObjectGlobe communication partners via certificates. Finally, authorization is carried
out by the individual providers when a query is instantiated. If a provider restricts the use of its resources, the
authentication information of the user will be part of the plan (again, as part of an annotation). Two possible

3There is also the standardized TLS (Transport Layer Security) protocol [DA99] of the Internet Engineering Task Force (IETF)
which is quite similar to the current SSL 3.0 protocol.
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Figure 7: Java’s Five-Layer Security Model

authentication schemas are supported. (1) Parts of a plan can be signed and carry the corresponding certificate.
(2) The sub-plan is annotated with an encrypted password.

4.2 Extensibility

To integrate an external function, a function provider must implement a simple predefined interface. To imple-
ment aniterator, for example,open , next , close , andreopen methods must be implemented following
the iterator model described in [Gra93]. The interface of other external functions (e.g.,transformerssuch as
thumbnail) is simpler; these external functions are wrapped by generic (built-in) ObjectGlobe iterators.

In the following we briefly describe theopen method for iterators, since it has a special requirement.
The open method returns an object of a class namedTypeSpec . Such an object describes the type of the
tuples which will be produced with every call of thenext method. Type specifications are also recorded
in the lookup service; just like authorization information, however, the type specifications recorded in the
lookup service might be outdated or incomplete. Based on these (runtime)TypeSpecs polymorphic func-
tions can be constructed. Furthermore, it is possible to compute theouter unionof two collections that have
different attributes; for example, twohotel data sources on the Internet (e.g.,www.HotelBook.com and
www.HotelGuide.com ) might have slightly different attributes and it is nevertheless possible in Object-
Globe to ask aselect * query that retrieves all attributes from both sources.

4.3 Secure Query Engine Extensibility

We have utilized Java’s security model [Oak98] to guarantee security of ObjectGlobe servers while executing
external operators from possibly unknown function providers. Java‘s five-layer security model is illustrated in
Figure 7. Java is a strongly typed object-oriented programming language with information hiding. The adher-
ence to typing and information hiding rules are verified by the compiler and again by the class/bytecode-verifier
before a Class object is generated from the bytecode because code could be generated by an evil compiler. The
class loader’s task is to load the bytecode of a class into memory, monitor the loaded code’s origin (i.e., its
URL) and to verify the signature of the authenticated code. The security manager controls the access to safety
critical system resources such as the file system, network sockets, peripherals, etc. The security manager is
used to create a so-calledsandboxin which untrusted code is executed. A special, particularly restrictive sand-
box is used, for example, by Web browsers to execute Applets. The ObjectGlobe system is based on the latest
Java Release 2, in which the Security Manager interfaces with the Access Controller. The Access Controller
verifies whether an access to a safety-critical resource is legitimate based on a configurable policy, which is
stored in thePolicyFile . Privileges can be granted based on the origin of the code and whether or not it is
digitally signed (i.e., authenticated) code. In addition, the Access Controller allows to temporarily give classes
the ability to perform an action on behalf of a class that might not normally have that ability by marking code as
privileged. This feature is essential, e.g., for granting access to temporary files as explained below. Finally, the
Java program is executed by the interpreter (the JVM) which is responsible for runtime enforcement of security
by checking array bounds and object casts, among others. From a security perspective, it is irrelevant whether
or not parts of the code are compiled by a just-in-time (JIT) compiler to increase performance.
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Figure 8: (a) Security of Dynamically Loaded Code, (b) Extending Privileged Access Rights to User-Defined Oper-
ators

Of course, it would be unreasonable to grant unprotected access to system resources—such as the file
system, the network sockets, etc—to unknown code. Therefore, all external operators are executed in a “tight”
sandbox. Furthermore, the name spaces of concurrent queries are separated from each other. This way it is
guaranteed, that they cannot illegitimately exchange information via covert channels (“hidden communication
paths”), e.g., via static class variables of external operators. The name space separation is achieved by using a
new, dedicated class loader (calledOGClassLoader) for each query. This class loader is responsible for loading
any additional functions beyond the built-in ObjectGlobe classes. The code bases (i.e., the function providers)
from which these operators can be loaded are annotated in the query execution plan. Schematically, the name
space separation and the class loaders are illustrated in Figure 8(a).

Some query operators require access to the cycle provider’s secondary memory in order to store temporary
results. Obviously, we cannot generally grant access to the file system to any external operator. Instead, a
particular built-in class, calledTmpFilehas to be used. This built-in class provides a safe interface to create a
temporary file, to write into and read from the temporary file and to delete the temporary file. Furthermore, a
TmpFileobject ensures the automatic deletion of the corresponding file when it is garbage collected. This way
it is guaranteed that external operators can only operate on temporary files that they created themselves (within
the same query execution plan). This scenario is illustrated in Figure 8(b).

Access to network sockets is normally prohibited to external operators to prevent them from sending any
information about the data they process (to unknown locations). This restriction needs to be relaxed when a
cycle provider wants to execute a wrapper which accesses data that is published by, e.g., a Web server. Therefore
the policy of the Access Controller must be configured to allow a trusted and authenticated wrapper to establish
a connection to a particular host on a given port. It is also possible to configure a relaxed policy that gives this
privilege to arbitrary wrappers. The more restrictive policy situation is, for example, suitable for a wrapper
accessing anFTP server to fetch a file. Granting the right to connect to this server to any external operator
would allow operators to store any kind of information at this server, which is certainly not desirable. The more
relaxed policy is applicable if granting access to a server is harmless; e.g., access to a server which only sends
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up-to-date exchange rates for given currencies.
The sandbox security model cannot protect providers from so-called denial of service attacks where mali-

cious code overconsumes CPU cycles or other resources. To protect cycle or data providers from this kind of
attack, accounting and authentication can help for identifying and possibly punishing intruders. As a part of a
general accounting mechanism we will describe our monitor component which is used to control the progress
of query operators. This way some simple overconsumption problems, such as operators which maliciously or
accidentally consume resources without producing results, can be detected and repaired by halting the query
execution.

4.4 Monitoring the Progress of Query Execution

Monitor
Operator

Query 2Query 1
priority queue
for timeouts

Server 2

inform about failed sub-plans

terminates

sub-plan
a failed

insert
timeoutMonitor Thread

terminator 2

terminator 1

inform about failed sub-plans

Server 1

Server 3

Figure 9: The Architecture of the Monitor Component.

The execution of an ObjectGlobe query can fail for a variety of reasons: network failures, crashed servers,
badly programmed external operators, extremely overloaded servers, etc. Without precautions such failures
can lead to live- or deadlocked query execution plans, in which upper-level query operators wait indefinitely
for blocked sub-plans to deliver their results. Therefore, it is important to monitor the progress of the query
execution and inform the participating ObjectGlobe servers about failures.

Each ObjectGlobe server uses a dedicated thread (we call it themonitor thread) for detecting blocked
queries. A monitor thread operates on a data structure, which is organized as a priority queue. The objects
stored in this queue represent future points in time and the object with the closest point in time has the highest
priority. Such an object (we call it atimeout object) specifies an event inside a query, which has to occur in
that query until the specified point in time has been reached. If its time has come, the monitor thread removes
the timeout object out of the queue and checks if the associated event has occurred. If this is the case, the
object is discarded and nothing else happens. Otherwise the affected sub-plan of the query is assumed to
be blocked and it is terminated by a special terminator thread. When a sub-plan is stopped due to an error
condition in an operator, the ObjectGlobe servers, executing the operators beneath and above the failed one
in the plan hierarchy will be informed about this fact. The sub-plans of the operators beneath will normally
fail. The operators above could react to the failure in special ways (also fail, rearrange the plan, execute an
alternative sub-plan, etc. [CD99]). The propagation of an error up the hierarchy is performed by the standard
exception handling mechanism of Java with a little help from our send-/receive operator pair for crossing
network connections. The servers of child operators cannot be informed with the exception mechanism. A

14



Total Lookup Time Avg. Time per Search Optimization Time

Scenario I 5.64 secs 0.47 secs 0.83 secs
Scenario II 5.64 secs 0.47 secs 0.07 secs

Table 1: Overheads of Plan Generation

wrapper execution location time

Passau 151 secs
Maryland 62 secs

Table 2: Query for all Hotels in Philadelphia

special (UDP) network protocol is used for this purpose.
What we did not mention up to now is, where the timeout objects come from. These objects are created

by a special type of operator, amonitor operator. A monitor operator can be inserted at arbitrary positions in
a query evaluation plan, since it does not change its input tuple stream. Positions where we will always insert
monitor operators are above receive operators and above any external operator. Its job is to observe the progress
of the actions performed by the sub-plan beneath it. For example, at the beginning of its open method a monitor
operator creates a timeout object for the event “end of open reached” and inserts this object into the priority
queue of the monitor thread, while also keeping a reference to that object. After that, the open method of its
child operator is called. When the method invocation returns, the timeout object is informed, that its awaited
event has occurred.

The advantage of this architecture is that the decisions about where to monitor in a query evaluation plan
and with what parameters the timeouts should be initialized can be made in a flexible manner. Setting timeouts
is critical, just as in any other system. One option is to set the timeout based on the response time estimates of
the optimizer. Another option is to use a default value. Other operators and especially external operators need
not implement anything for the monitor component. An overview of this architecture is given in Figure 9.

5 Performance Experiments

5.1 Overheads of Plan Generation

To determine the overheads of plan generation, we measured thelookup andoptimizesteps of processing a
five-way join query. The optimizer ran on a Sun Ultra 10 workstation; the lookup service ran on a Sun Ultra 1
workstation. There were six relevant cycle providers and the optimizer considered three different join variants
(nested-loops, hash, and sort-merge). We studied two different scenarios. In Scenario I, all joins could be
executed at all cycle providers; in Scenario II, joins with two of the five collections could only be executed
at one specific cycle provider. Table 1 summarizes the results. Even though the meta-database of the lookup
service is very small, most of the time is consumed in the lookup step; the reason is that twelve search requests
are required for this query and the overhead of each search request is very high; clearly, we need to tune this in
future work. The optimization time is acceptable in this experiment (< 1 sec). The optimization time is much
lower for Scenario II than for Scenario I because the search space is much smaller for Scenario II due to the
authorization restrictions.
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plain SHA IDEA + SHA

scan[Passau→ Passau], 100 MBit LAN 3.54 secs 5.31 secs 11.86 secs
scan[Mannheim→ Passau], WAN 81.93 secs 81.86 secs 82.04 secs

Table 3: Costs of Secure Communication in Different Network Environments

5.2 Query Execution Times

5.2.1 Benefits of Operator Mobility

The following experiment illustrates the benefits of ObjectGlobe which makes it possible to execute query
operators near data sources. We measured the execution time of a query which requests information about all
hotels located in Philadelphia from HotelBook, an Internet data source. To perform this task a wrapper was
used which first queries a list of all hotels in a given city and afterwards queries detailed information for every
single hotel in this list one at a time, according to the query capabilities of the data source. There are two ways
to execute this query. The traditional one is to execute the wrapper at the local machine in Passau, the other one
which is made available by ObjectGlobe is to execute the wrapper at a host near the data source. Because it is
impossible to execute the wrapper at the host serving HotelBook in Phoenix, we used a host in Maryland for
this experiment.

As the results in Table 2 show there is a clear benefit if the wrapper is executed in Maryland because
Maryland is closer to the HotelBook database than Passau and therefore the latency time is reduced when the
wrapper iteratively accesses the HotelBook database. This experiment does not demonstrate how parallelism
can be used to speed up query execution, but performance gains from parallelism can also be achieved with
ObjectGlobe.

5.2.2 Costs of Secure Communication

SSL sockets [FKK96] and therewith encryption and Message Authentication Codes (MACs) are an effective
way to integrate secure communication into a distributed system. But cryptographic algorithms have additional
costs when transmitting data across a network. To demonstrate this effect we executed a simple scan-display
plan and varied sites of the scan operator and the usage of SSL. In all cases the scan operator had to process
10 MB of data. As Table 3 illustrates, costs for encryption and MAC calculation can be neglected in a WAN
environment. The first column contains information about where the scan and the display operators were
executed4 and across what kind of network the data was sent. The remaining three columns list the times of
query executions where the data was not encrypted and no MAC was calculated (plain), where only a MAC was
calculated (SHA) and where both, encryption and MAC calculation, were done (IDEA + SHA). Whereas the
first row shows that secure communication increases the query execution time in LAN environments (but the
overall execution time is even with fully secured communication neglectable compared to query executions in
a WAN environment) the second row shows that in a WAN environment there is no significant time difference
between secure and insecure query execution because costs for cryptographic algorithms are CPU costs and are
superimposed by communication costs.

5.2.3 Costs of Dynamic Extensibility

One of the prominent features of ObjectGlobe is its dynamic extensibility by external operators. There are
of course additional costs caused by loading classes from the network and the separation of name spaces of
different queries compared to loading locally available built-in operators. This separation of name spaces is
achieved by using an individual OGClassLoader for every query and it forbids the caching of Class objects for

4X → Y means that the scan operator was executed at host X and the display operator was executed on host Y.
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external operators. Instead, only the bytecode (rather than the instantiated class object) of an external operator
can be cached and this bytecode is cached in a separate ClassFileCache. To measure the overheads of loading an
operator from a remote site and from the ClassFileCache, we loaded built-in and external operators of different
size stored at different locations using our OGClassLoader: built-in operators from disk and external operators
from a local function provider in Passau and a remote function provider in Maryland. For external operators, we
measure three scenarios: (a) the bytecode is not cached at all; (b) the bytecode is cached in the ClassFileCache;
(c) the operator is cached as a class object internally in the OGClassLoader. Scenario (c) is used as a baseline
and simulates the behavior of a system without security measures. Figure 10 shows the following effects:

• The costs for the initial loading of a class from disk or network are very high (the +-lines in Figure 10)
but can be heavily reduced by caching the class object of built-in operators or caching the bytecode of
external operators (the triangle lines).

• Comparing the X-lines (Scenario (c)) and triangle lines (Scenario (b)), we see that the overheads to ensure
security are relatively high; compared to the overall costs of query processing on the Internet, however,
the overheads for security can usually be neglected (less than a second in all cases).
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Figure 10: Costs of Loading an Operator by the ObjectGlobe Class Loader

6 Project Status and Future Work

We presented the design of ObjectGlobe, an open and distributed and secure query processing system. The
goal of ObjectGlobe is to establish an open market place in which data, function, and cycle providers cansell
their services, following some business model which can be implemented on top of ObjectGlobe. End users
and applications can use these services in a low-overhead way. We gave details of the ObjectGlobe lookup
service, the query parser and optimizer, and the runtime system. For each component, we showed the necessary
adjustments in order to produce valid plans and guarantee security at execution time.

The project started about three years ago. A first demo was given at SIGMOD 99 [BKK99]. This demo
involves twohotel servers (i.e., HotelGuide, located in Switzerland, and HotelBook, located in the USA), a
server with images of tourist attractions (located in Germany), a German server withcity information, and the
server of the German railways with all German train connections. This demo (available on our Web site) can be
seen as a simplified e-commerce platform for travel agencies. In a larger student project we are now building a
more generic e-commerce application framework that uses ObjectGlobe as the enabling technology to construct
scalable and open virtual marketplaces.

While some of the ObjectGlobe components by themselves are already quite sophisticated and highly tuned,
our major efforts so far were in getting the system running. As future work, we are planning to improve the
performance of the system. For example, we would like to reduce the number of queries that the lookup service
needs to process during parsing. Furthermore, we would like to build data caches for ObjectGlobe. Currently,
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we use ObjectGlobe as a research platform for two ongoing projects on quality of service. The focus is on (1)
quality of service enforcement for query processing—i.e., enforcing time, cost and completeness constraints—
and (2) semi-automatic quality assessment of external query operators—e.g., by data flow analysis, automatic
stress testing, etc.
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[Kri98] N. Krivokapić. Control mechanisms in distributed object bases: Synchronization, deadlock detection,
migration, volume 54 ofDissertationen zu Datenbanken und Informationssystemen. infix-Verlag, Ringstr.
32, 53757 Sankt Augustin, 1998. ISBN: 3-89601-454-4, Dissertation, Universit¨at Passau, Germany.

[KS98] D. Konopnicki and O. Shmueli. Information gathering in the world wide web: The W3QL query languge
and the W3QS system.ACM Trans. on Database Systems, 23(4):369–410, Dec 1998.

[KS00] D. Kossmann and K. Stocker. Iterative dynamic programming: A new class of query optimization algo-
rithms. ACM Trans. on Database Systems, 25(1), March 2000. To appear.

[LRO96] A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous information sources using source descrip-
tions. In VLDB [VLD96], pages 251–262.

[MMM97] A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying the World Wide Web.Int. Journal on Digital
Libraries, 1(1):54–67, 1997.

[MRT98] G. A. Mihaila, L. Raschid, and A. Tomasic. Equal time for data on the Internet with WebSemantics.
In Proc. of the Intl. Conf. on Extending Database Technology (EDBT), volume 1377 ofLecture Notes in
Computer Science (LNCS), pages 87–101, Valencia, Spain, March 1998. Springer-Verlag.

[MZ95] T. J. Mowbray and R. Zahavi.The Essential Corba – Systems Integration Using Distributed Objects. John
Wiley & Sons, Chichester, UK, 1995.

[Oak98] S. Oaks.Java Security. O’Reilly & Associates, Sebastopol, CA, USA, 1998.

[PGGMU95] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. Ullman. A query tranlation scheme for rapid
implementation of wrappers. InProc. of the Conf. on Deductive and Object-Oriented Databases (DOOD),
pages 161–186, December 1995.

[RBKW91] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A model of authorization for next-generation database
systems.ACM Trans. on Database Systems, 16(1):88–131, March 1991.

[ROH99] M. Tork Roth, F. Ozcan, and L. Haas. Cost models DO matter: Providing cost information for diverse data
sources in a federated system. InProc. of the Conf. on Very Large Data Bases (VLDB), pages 599–610,
Edinburgh, GB, September 1999.

[RS97] M. Tork Roth and P. Schwarz. Don’t scrap it, wrap it! A wrapper architecture for legacy data sources. In
VLDB [VLD97], pages 266–275.

[SAL+96] M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: A
wide-area distributed database system.The VLDB Journal, 5(1):48–63, January 1996.

[SAP99] SAP. Business networking in the Internet age. Technical report, SAP White Paper, Sep 1999.http:
//www.sap-ag.de/germany/products/mysap/pdf/bus_networking.pdf .

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control models.IEEE
Computer, 29(2):38–47, 1996.

[SIG98] Proc. of the ACM SIGMOD Conf. on Management of Data, Seattle, WA, USA, June 1998.

19



[SIG99] Proc. of the ACM SIGMOD Conf. on Management of Data, Philadelphia, PA, USA, June 1999.

[SL90] A. Sheth and J. Larson. Federated database systems for managing distributed, heterogeneous, and auton-
mous databases.ACM Computing Surveys, 22(3):183–236, September 1990.

[SLR97] P. Seshadri, M. Livny, and R. Ramakrishnan. The case for enhanced abstract data types. In VLDB [VLD97],
pages 66–75.

[SR86] M. Stonebraker and L. Rowe. The design of POSTGRES. InProc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 340–355, Washington, USA, June 1986.

[TRV98] A. Tomasic, L. Raschid, and P. Valduriez. Scaling acccess to distributed heterogeneous data sources with
DISCO. IEEE Trans. Knowledge and Data Engineering, 10(5):808–823, October 1998.

[VLD96] Proc. of the Conf. on Very Large Data Bases (VLDB), Bombay, India, September 1996.

[VLD97] Proc. of the Conf. on Very Large Data Bases (VLDB), Athens, Greece, August 1997.

[Wal99] J. Waldo. The Jini Architecture for Network-centric Computing.Communications of the ACM, 42(7):76–
82, 1999.

[WHK97] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3).
ftp://ftp.isi.edu/in-notes/rfc2251.txt , December 1997.

A The XML Representation of a Query Execution Plan

<?xml version="1.0" encoding=’ISO-8859-1’?>

<iterator id="display" code="iterators.display" host="client">
<iterator id="join1" code="iterators.NestedLoops"

codeBase="http://www.FctProv.com/forGlobalUse"
host="client">

<predicate>Sb = Tb</predicate>

<iterator id="join2" code="iterators.NestedLoops" host="***.A.com">
<predicate>Ra = Sa</predicate>

<iterator id="wrapperS" code="wrapper.wrap_S"
codeBase="http://www.FctProv.com" host="***.A.com">

</iterator>
<iterator id="tbscanR" code="iterators.TbScan" host="***.A.com">

<source>R</source>
</iterator>

</iterator>

<iterator id="thumb1" code="thumbnail" codeBase="http://www.FctProv.com"
host="***.B.com">

<toThumbNail>picture</toThumbNail>

<iterator id="tbscanT" code="iterators.TbScan" host="***.B.com">
<source>T</source>

</iterator>
</iterator>

</iterator>
</iterator>

20



B The RDF Registration Code for a Data Provider

In the sample RDF-description shown below, the relevant information about the data provider can be found
enclosed in thes:DataProvider element. At the beginning of the data provider description we can find
the URL, with which the data provider can be contacted, the theme (i.e., hotel) this data provider is associ-
ated with, a plain-text description of the content of the provider, etc. More interesting is the content of the
s:attributes element. It contains the description of the type of the tuples, given by the data provider. In
our case the type contains three attributes and for each attribute the name and the type of the attribute are spec-
ified. After that we can find some restrictions on the functions, which can be applied on the tuples of this data
provider, and on the cycle providers, which may see the data of this data provider. At last we get a reference for
the wrapper, which performs the necessary transformations to integrate the data provider into an ObjectGlobe
system.

<?xml version="1.0"?>
<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:s="http://www.db.fmi.uni-passau.de/objectglobe/schema.rdf#">

<s:DataProvider rdf:ID="HotelBook">
<s:url>http://www.hotelbook.com/cgi-bin/hsearch</s:url>
<s:theme rdf:resource="http://www.db.fmi.uni-passau.de/objectglobe/common.rdf#hotel" />
<s:content>Description of hotels worldwide.</s:content>
<s:uniqueID>4711</s:uniqueID>
<s:attributes><rdf:Bag>

<rdf:li><s:Attribute>
<s:topic rdf:resource=

"http://www.db.fmi.uni-passau.de/objectglobe/travel.rdf#city" />
<s:domain rdf:resource=

"http://www.db.fmi.uni-passau.de/objectglobe/common.rdf#String" />
</s:Attribute></rdf:li>
<rdf:li><s:Attribute>

<s:topic rdf:resource=
"http://www.db.fmi.uni-passau.de/objectglobe/travel.rdf#address" />

<s:domain rdf:resource=
"http://www.db.fmi.uni-passau.de/objectglobe/common.rdf#String" />

</s:Attribute></rdf:li>
<rdf:li><s:Attribute>

<s:topic rdf:resource=
"http://www.db.fmi.uni-passau.de/objectglobe/travel.rdf#price" />

<s:domain rdf:resource=
"http://www.db.fmi.uni-passau.de/objectglobe/common.rdf#US-Dollar" />

</s:Attribute></rdf:li>
</rdf:Bag></s:attributes>
<s:allowedFP><rdf:Bag>

<rdf:li rdf:resource="http://www.demo.de/leisure.rdf#hotelRanking" />
<rdf:li rdf:resource="http://www.finance-demo.de/currency.rdf#currencyConverter" />

</rdf:Bag></s:allowedFP>
<s:allowAllFP>false</s:allowAllFP>
<s:allowAllCP>true</s:allowAllCP>
<s:wrapper

rdf:resource=
"http://www.db.fmi.uni-passau.de/objectglobe/wrappers.rdf#HotelBookWrapper" />

</s:DataProvider>
</RDF>
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